NLP_Bag-Of-Words(词袋模型)

文章目录


词袋模型

词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示

用词袋模型计算文本相似度

1.构建实验语料库

python 复制代码
# 构建一个数据集
corpus = ["我特别特别喜欢看电影",
        "这部电影真的是很好看的电影",
        "今天天气真好是难得的好天气",
        "我今天去看了一部电影",
        "电影院的电影都很好看"]

2.给句子分词

python 复制代码
# 对句子进行分词
import jieba # 导入 jieba 包
# 使用 jieba.cut 进行分词,并将结果转换为列表,存储在 corpus_tokenized 中
corpus_tokenized = [list(jieba.cut(sentence)) for sentence in corpus]

3.创建词汇表

python 复制代码
# 创建词汇表
word_dict = {} # 初始化词汇表
# 遍历分词后的语料库
for sentence in corpus_tokenized:
    for word in sentence:
        # 如果词汇表中没有该词,则将其添加到词汇表中
        if word not in word_dict:
            word_dict[word] = len(word_dict) # 分配当前词汇表索引
print(" 词汇表:", word_dict) # 打印词汇表

4.生成词袋表示

python 复制代码
# 根据词汇表将句子转换为词袋表示
bow_vectors = [] # 初始化词袋表示
# 遍历分词后的语料库
for sentence in corpus_tokenized:
    # 初始化一个全 0 向量,其长度等于词汇表大小
    sentence_vector = [0] * len(word_dict)
    for word in sentence:
        # 将对应词的索引位置加 1,表示该词在当前句子中出现了一次
        sentence_vector[word_dict[word]] += 1
    # 将当前句子的词袋向量添加到向量列表中
    bow_vectors.append(sentence_vector)
print(" 词袋表示:", bow_vectors) # 打印词袋表示

5.计算余弦相似度

计算余弦相似度(Cosine Similarity),衡量两个文本向量的相似性。

余弦相似度可用来衡量两个向量的相似程度。它的值在-1到1之间,值越接近1,表示两个向量越相似;值越接近-1,表示两个向量越不相似;当值接近0时,表示两个向量之间没有明显的相似性。

余弦相似度和向量距离(Vector Distance)都可以衡量两个向量之间的相似性。余弦相似度关注向量之间的角度,而不是它们之间的距离,其取值范围在-1(完全相反)到1(完全相同)之间。向量距离关注向量之间的实际距离,通常使用欧几里得距离(Euclidean Distance)来计算。两个向量越接近,它们的距离越小。

如果要衡量两个向量的相似性,而不关心它们的大小,那么余弦相似度会更合适。因此,余弦相似度通常用于衡量文本、图像等高维数据的相似性,因为在这些场景下,关注向量的方向关系通常比关注距离更有意义。而在一些需要计算实际距离的应用场景,如聚类分析、推荐系统等,向量距离会更合适。

python 复制代码
# 导入 numpy 库,用于计算余弦相似度
import numpy as np 
# 定义余弦相似度函数
def cosine_similarity(vec1, vec2):
    dot_product = np.dot(vec1, vec2) # 计算向量 vec1 和 vec2 的点积
    norm_a = np.linalg.norm(vec1) # 计算向量 vec1 的范数
    norm_b = np.linalg.norm(vec2) # 计算向量 vec2 的范数  
    return dot_product / (norm_a * norm_b) # 返回余弦相似度
# 初始化一个全 0 矩阵,用于存储余弦相似度
similarity_matrix = np.zeros((len(corpus), len(corpus)))
# 计算每两个句子之间的余弦相似度
for i in range(len(corpus)):
    for j in range(len(corpus)):
        similarity_matrix[i][j] = cosine_similarity(bow_vectors[i], 
                                                    bow_vectors[j])

6.可视化余弦相似度

python 复制代码
# 导入 matplotlib 库,用于可视化余弦相似度矩阵
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.font_manager import FontProperties
font = FontProperties(fname='SimHei.ttf', size = 15)

#plt.rcParams["font.family"]=['SimHei'] # 用来设定字体样式
#plt.rcParams['font.sans-serif']=['SimHei'] # 用来设定无衬线字体样式
#plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
fig, ax = plt.subplots() # 创建一个绘图对象
# 使用 matshow 函数绘制余弦相似度矩阵,颜色使用蓝色调
cax = ax.matshow(similarity_matrix, cmap=plt.cm.Blues)
fig.colorbar(cax) # 条形图颜色映射
ax.set_xticks(range(len(corpus))) # x 轴刻度
ax.set_yticks(range(len(corpus))) # y 轴刻度
ax.set_xticklabels(corpus, rotation=45, ha='left', FontProperties = font) # 刻度标签 
ax.set_yticklabels(corpus, FontProperties = font) # 刻度标签为原始句子
plt.show() # 显示图形

词袋模型小结

Bag-of-Words则是一种用于文本表示的技术,它将文本看作由单词构成的无序集合,通过统计单词在文本中出现的频次来表示文本。因此,Bag-of-Words主要用于文本分类、情感分析、信息检索等自然语言处理任务中。

  • (1) Bag-of-Words是基于词频将文本表示为一个向量,其中每个维度对应词汇表中的一个单词,其值为该单词在文本中出现的次数。
  • (2) Bag-of-Words忽略了文本中的词序信息,只关注词频。这使得词袋模型在某些任务中表现出色,如主题建模和文本分类,但在需要捕捉词序信息的任务中表现较差,如机器翻译和命名实体识别。
  • (3)Bag-of-Words 可能会导致高维稀疏表示,因为文本向量的长度取决于词汇表的大小。为解决这个问题,可以使用降维技术,如主成分分析(Principal Component Analysis,PCA)或潜在语义分析(Latent Semantic Analysis,LSA)。

学习的参考资料:

(1)书籍

利用Python进行数据分析

西瓜书

百面机器学习

机器学习实战

阿里云天池大赛赛题解析(机器学习篇)

白话机器学习中的数学

零基础学机器学习

图解机器学习算法

动手学深度学习(pytorch)

...

(2)机构

光环大数据

开课吧

极客时间

七月在线

深度之眼

贪心学院

拉勾教育

博学谷

慕课网

海贼宝藏

...

相关推荐
ciku2 分钟前
Spring AI Starter和文档解读
java·人工智能·spring
Blossom.11811 分钟前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
小贤编程手记25 分钟前
毛绒变装、吉卜力风...快手AI视频可灵为什么好用?
人工智能·数码产品
TGITCIC33 分钟前
从依赖到自研:一个客服系统NLP能力的跃迁之路
人工智能·智能客服·ai大模型·大模型落地·ai落地·大模型ai·rag增强检索
鲲鹏Talk34 分钟前
燃爆了!我在字节亲历一场 AI 编程盛宴,干货多到溢出来!
人工智能·程序员
MARS_AI_1 小时前
云蝠智能VoiceAgent:AI赋能售后服务场景的创新实践
人工智能·语言模型·自然语言处理·人机交互·信息与通信
全星0071 小时前
从合规到卓越:全星QMS如何成为制造企业的质量战略引擎
人工智能
桃源学社(接毕设)2 小时前
基于人工智能和物联网融合跌倒监控系统(LW+源码+讲解+部署)
人工智能·python·单片机·yolov8
CCF_NOI.2 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变