1.27马尔科夫链,抽样蒙特卡洛模拟(逆转化方法,接受拒绝矩阵),马尔科夫链蒙特卡洛MCMC,隐马尔科夫(HMM(V算法剪枝优化),NLP)

马尔科夫链

蒙特卡洛法模拟

抽样,逆转换方法

就是说由系统自带的随机函数RANDOM,通过下面这个方法,可以变为对应的随机模拟函数

就是说要实现蒙特卡洛模拟,是要先有一个概率表达式,然后基于这个概率表达式,通过自带的随机RANDROM函数进行转换,最后实现这个表达式

而这个转换函数就是表达式的反函数

接受拒绝抽样

接受拒绝抽样

就是说要实现二维的随机模拟,就是要两个随机均匀分布函数,第一个是实现在-5到5的区间内,最大值为1的随机抽样,计为gx,它

就是先在定义域里随机取一个值a,然后计算目标函数在a下的值,接着由在0到最大值*ga上取一个值b,如果满足条件就接受a,不然就不接受;

就是第一次随机取样是水平的,取完后能确定一个横坐标,以及目标函数的纵坐标;第二次是在第一次取样的基础上再竖直上的取的,来判断第一次取的点能不能要

就是说第一次取样确定横坐标a,第二次取样确定纵坐标b,最后的取样点为(a,b)

1,如果a,b被采纳,就使横坐标a上对应的高度++,

就是说第一步还是随机在定义域上选,然后在确定纵坐标时,上界不再是一个常数,而也是一个动态变化的天花板ZX,这样就能提高通过率

马尔科夫链蒙特卡洛法MCMC

MH算法

隐马尔可夫HMM

隐马尔可夫在NLP

就是说,一个矩阵是描述整个句子结构构成的概率

另一个矩阵是在确定矩阵结构基础上,去选词,来确定这个句子的具体含义

相关推荐
5Gcamera1 天前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
爱喝可乐的老王1 天前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发1 天前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00001 天前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了1 天前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
_codemonster1 天前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师1 天前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
laplace01231 天前
第七章 构建自己的agent智能体框架
网络·人工智能·microsoft·agent
诗词在线1 天前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘
高锰酸钾_1 天前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习