1.27马尔科夫链,抽样蒙特卡洛模拟(逆转化方法,接受拒绝矩阵),马尔科夫链蒙特卡洛MCMC,隐马尔科夫(HMM(V算法剪枝优化),NLP)

马尔科夫链

蒙特卡洛法模拟

抽样,逆转换方法

就是说由系统自带的随机函数RANDOM,通过下面这个方法,可以变为对应的随机模拟函数

就是说要实现蒙特卡洛模拟,是要先有一个概率表达式,然后基于这个概率表达式,通过自带的随机RANDROM函数进行转换,最后实现这个表达式

而这个转换函数就是表达式的反函数

接受拒绝抽样

接受拒绝抽样

就是说要实现二维的随机模拟,就是要两个随机均匀分布函数,第一个是实现在-5到5的区间内,最大值为1的随机抽样,计为gx,它

就是先在定义域里随机取一个值a,然后计算目标函数在a下的值,接着由在0到最大值*ga上取一个值b,如果满足条件就接受a,不然就不接受;

就是第一次随机取样是水平的,取完后能确定一个横坐标,以及目标函数的纵坐标;第二次是在第一次取样的基础上再竖直上的取的,来判断第一次取的点能不能要

就是说第一次取样确定横坐标a,第二次取样确定纵坐标b,最后的取样点为(a,b)

1,如果a,b被采纳,就使横坐标a上对应的高度++,

就是说第一步还是随机在定义域上选,然后在确定纵坐标时,上界不再是一个常数,而也是一个动态变化的天花板ZX,这样就能提高通过率

马尔科夫链蒙特卡洛法MCMC

MH算法

隐马尔可夫HMM

隐马尔可夫在NLP

就是说,一个矩阵是描述整个句子结构构成的概率

另一个矩阵是在确定矩阵结构基础上,去选词,来确定这个句子的具体含义

相关推荐
子燕若水1 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室2 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿3 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫3 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手3 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记3 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元3 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术4 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿4 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉