1.27马尔科夫链,抽样蒙特卡洛模拟(逆转化方法,接受拒绝矩阵),马尔科夫链蒙特卡洛MCMC,隐马尔科夫(HMM(V算法剪枝优化),NLP)

马尔科夫链

蒙特卡洛法模拟

抽样,逆转换方法

就是说由系统自带的随机函数RANDOM,通过下面这个方法,可以变为对应的随机模拟函数

就是说要实现蒙特卡洛模拟,是要先有一个概率表达式,然后基于这个概率表达式,通过自带的随机RANDROM函数进行转换,最后实现这个表达式

而这个转换函数就是表达式的反函数

接受拒绝抽样

接受拒绝抽样

就是说要实现二维的随机模拟,就是要两个随机均匀分布函数,第一个是实现在-5到5的区间内,最大值为1的随机抽样,计为gx,它

就是先在定义域里随机取一个值a,然后计算目标函数在a下的值,接着由在0到最大值*ga上取一个值b,如果满足条件就接受a,不然就不接受;

就是第一次随机取样是水平的,取完后能确定一个横坐标,以及目标函数的纵坐标;第二次是在第一次取样的基础上再竖直上的取的,来判断第一次取的点能不能要

就是说第一次取样确定横坐标a,第二次取样确定纵坐标b,最后的取样点为(a,b)

1,如果a,b被采纳,就使横坐标a上对应的高度++,

就是说第一步还是随机在定义域上选,然后在确定纵坐标时,上界不再是一个常数,而也是一个动态变化的天花板ZX,这样就能提高通过率

马尔科夫链蒙特卡洛法MCMC

MH算法

隐马尔可夫HMM

隐马尔可夫在NLP

就是说,一个矩阵是描述整个句子结构构成的概率

另一个矩阵是在确定矩阵结构基础上,去选词,来确定这个句子的具体含义

相关推荐
Elastic 中国社区官方博客几秒前
Elasticsearch:使用机器学习生成筛选器和分类标签
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·分类
movie__movie4 分钟前
Spring AI MCP 客户端实战:轻松连接高德地图等工具
数据库·人工智能·spring
跳跳糖炒酸奶29 分钟前
第四章、Isaacsim在GUI中构建机器人(3):添加摄像头和传感器
人工智能·python·算法·ubuntu·机器人
求知呀2 小时前
最直观的 Cursor 使用教程
前端·人工智能·llm
飞哥数智坊2 小时前
从“工具人”到“超级个体”:程序员如何在AI协同下实现能力跃迁
人工智能
chenqi2 小时前
WebGPU和WebLLM:在浏览器中解锁端侧大模型的未来
前端·人工智能
罗西的思考3 小时前
[2W字长文] 探秘Transformer系列之(23)--- 长度外推
人工智能·算法
小杨4044 小时前
python入门系列十四(多进程)
人工智能·python·pycharm
阿坡RPA19 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499319 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python