Apache Zeppelin 整合 Spark 和 Hudi

一 环境信息

1.1 组件版本

组件 版本
Spark 3.2.3
Hudi 0.14.0
Zeppelin 0.11.0-SNAPSHOT

1.2 环境准备

  1. Zeppelin 整合 Spark 参考:Apache Zeppelin 一文打尽
  2. Hudi0.14.0编译参考:Hudi0.14.0 最新编译

二 整合 Spark 和 Hudi

2.1 配置

shell 复制代码
%spark.conf

SPARK_HOME /usr/lib/spark

# set execution mode
spark.master yarn
spark.submit.deployMode client

# --jars
spark.jars /root/app/jars/hudi-spark3.2-bundle_2.12-0.14.0.jar

# --conf
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.sql.catalog.spark_catalog org.apache.spark.sql.hudi.catalog.HoodieCatalog
spark.sql.extensions org.apache.spark.sql.hudi.HoodieSparkSessionExtension
spark.kryo.registrator org.apache.spark.HoodieSparkKryoRegistrar

Specifying yarn-client & yarn-cluster in spark.master is not supported in Spark 3.x any more, instead you need to use spark.master and spark.submit.deployMode together.

Mode spark.master spark.submit.deployMode
Yarn Client yarn client
Yarn Cluster yarn cluster

2.2 导入依赖

scala 复制代码
%spark
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.common.table.HoodieTableConfig._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.keygen.constant.KeyGeneratorOptions._
import org.apache.hudi.common.model.HoodieRecord
import spark.implicits._

2.3 插入数据

scala 复制代码
%spark
val tableName = "trips_table"
val basePath = "hdfs:///tmp/trips_table"
val columns = Seq("ts","uuid","rider","driver","fare","city")
val data =
  Seq((1695159649087L,"334e26e9-8355-45cc-97c6-c31daf0df330","rider-A","driver-K",19.10,"san_francisco"),
    (1695091554788L,"e96c4396-3fad-413a-a942-4cb36106d721","rider-C","driver-M",27.70 ,"san_francisco"),
    (1695046462179L,"9909a8b1-2d15-4d3d-8ec9-efc48c536a00","rider-D","driver-L",33.90 ,"san_francisco"),
    (1695516137016L,"e3cf430c-889d-4015-bc98-59bdce1e530c","rider-F","driver-P",34.15,"sao_paulo"    ),
    (1695115999911L,"c8abbe79-8d89-47ea-b4ce-4d224bae5bfa","rider-J","driver-T",17.85,"chennai"));

var inserts = spark.createDataFrame(data).toDF(columns:_*)
inserts.write.format("hudi").
  option(PARTITIONPATH_FIELD_NAME.key(), "city").
  option(TABLE_NAME, tableName).
  mode(Overwrite).
  save(basePath)

2.3 查询数据

scala 复制代码
%spark
val tripsDF = spark.read.format("hudi").load(basePath)
tripsDF.createOrReplaceTempView("trips_table")
spark.sql("SELECT uuid, fare, ts, rider, driver, city FROM  trips_table WHERE fare > 20.0").show()

结果:

shell 复制代码
+--------------------+-----+-------------+-------+--------+-------------+
|                uuid| fare|           ts|  rider|  driver|         city|
+--------------------+-----+-------------+-------+--------+-------------+
|e96c4396-3fad-413...| 27.7|1695091554788|rider-C|driver-M|san_francisco|
|9909a8b1-2d15-4d3...| 33.9|1695046462179|rider-D|driver-L|san_francisco|
|e3cf430c-889d-401...|34.15|1695516137016|rider-F|driver-P|    sao_paulo|
+--------------------+-----+-------------+-------+--------+-------------+

相关推荐
人类群星闪耀时20 分钟前
物联网与大数据:揭秘万物互联的新纪元
大数据·物联网·struts
快手技术39 分钟前
Blaze RangePartitioning 算子Native实现全解析
spark·naive
桃林春风一杯酒6 小时前
HADOOP_HOME and hadoop.home.dir are unset.
大数据·hadoop·分布式
桃木山人7 小时前
BigData File Viewer报错
大数据·java-ee·github·bigdata
B站计算机毕业设计超人7 小时前
计算机毕业设计Python+DeepSeek-R1高考推荐系统 高考分数线预测 大数据毕设(源码+LW文档+PPT+讲解)
大数据·python·机器学习·网络爬虫·课程设计·数据可视化·推荐算法
数造科技7 小时前
紧随“可信数据空间”政策风潮,数造科技正式加入开放数据空间联盟
大数据·人工智能·科技·安全·敏捷开发
逸Y 仙X10 小时前
Git常见命令--助力开发
java·大数据·git·java-ee·github·idea
caihuayuan411 小时前
PHP建立MySQL持久化连接(长连接)及mysql与mysqli扩展的区别
java·大数据·sql·spring
B站计算机毕业设计超人11 小时前
计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·爬虫·机器学习·课程设计·数据可视化·推荐算法
(; ̄ェ ̄)。12 小时前
在nodejs中使用ElasticSearch(二)核心概念,应用
大数据·elasticsearch·搜索引擎