Apache Zeppelin 整合 Spark 和 Hudi

一 环境信息

1.1 组件版本

组件 版本
Spark 3.2.3
Hudi 0.14.0
Zeppelin 0.11.0-SNAPSHOT

1.2 环境准备

  1. Zeppelin 整合 Spark 参考:Apache Zeppelin 一文打尽
  2. Hudi0.14.0编译参考:Hudi0.14.0 最新编译

二 整合 Spark 和 Hudi

2.1 配置

shell 复制代码
%spark.conf

SPARK_HOME /usr/lib/spark

# set execution mode
spark.master yarn
spark.submit.deployMode client

# --jars
spark.jars /root/app/jars/hudi-spark3.2-bundle_2.12-0.14.0.jar

# --conf
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.sql.catalog.spark_catalog org.apache.spark.sql.hudi.catalog.HoodieCatalog
spark.sql.extensions org.apache.spark.sql.hudi.HoodieSparkSessionExtension
spark.kryo.registrator org.apache.spark.HoodieSparkKryoRegistrar

Specifying yarn-client & yarn-cluster in spark.master is not supported in Spark 3.x any more, instead you need to use spark.master and spark.submit.deployMode together.

Mode spark.master spark.submit.deployMode
Yarn Client yarn client
Yarn Cluster yarn cluster

2.2 导入依赖

scala 复制代码
%spark
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.common.table.HoodieTableConfig._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.keygen.constant.KeyGeneratorOptions._
import org.apache.hudi.common.model.HoodieRecord
import spark.implicits._

2.3 插入数据

scala 复制代码
%spark
val tableName = "trips_table"
val basePath = "hdfs:///tmp/trips_table"
val columns = Seq("ts","uuid","rider","driver","fare","city")
val data =
  Seq((1695159649087L,"334e26e9-8355-45cc-97c6-c31daf0df330","rider-A","driver-K",19.10,"san_francisco"),
    (1695091554788L,"e96c4396-3fad-413a-a942-4cb36106d721","rider-C","driver-M",27.70 ,"san_francisco"),
    (1695046462179L,"9909a8b1-2d15-4d3d-8ec9-efc48c536a00","rider-D","driver-L",33.90 ,"san_francisco"),
    (1695516137016L,"e3cf430c-889d-4015-bc98-59bdce1e530c","rider-F","driver-P",34.15,"sao_paulo"    ),
    (1695115999911L,"c8abbe79-8d89-47ea-b4ce-4d224bae5bfa","rider-J","driver-T",17.85,"chennai"));

var inserts = spark.createDataFrame(data).toDF(columns:_*)
inserts.write.format("hudi").
  option(PARTITIONPATH_FIELD_NAME.key(), "city").
  option(TABLE_NAME, tableName).
  mode(Overwrite).
  save(basePath)

2.3 查询数据

scala 复制代码
%spark
val tripsDF = spark.read.format("hudi").load(basePath)
tripsDF.createOrReplaceTempView("trips_table")
spark.sql("SELECT uuid, fare, ts, rider, driver, city FROM  trips_table WHERE fare > 20.0").show()

结果:

shell 复制代码
+--------------------+-----+-------------+-------+--------+-------------+
|                uuid| fare|           ts|  rider|  driver|         city|
+--------------------+-----+-------------+-------+--------+-------------+
|e96c4396-3fad-413...| 27.7|1695091554788|rider-C|driver-M|san_francisco|
|9909a8b1-2d15-4d3...| 33.9|1695046462179|rider-D|driver-L|san_francisco|
|e3cf430c-889d-401...|34.15|1695516137016|rider-F|driver-P|    sao_paulo|
+--------------------+-----+-------------+-------+--------+-------------+

相关推荐
武子康13 分钟前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.2 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧2 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研3 小时前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能
辞--忧9 小时前
双十一美妆数据分析:洞察消费趋势与行业秘密
大数据
时序数据说16 小时前
国内时序数据库概览
大数据·数据库·物联网·时序数据库·iotdb
阿Paul果奶ooo18 小时前
Flink中基于时间的合流--双流联结(join)
大数据·flink
数据爬坡ing19 小时前
过程设计工具深度解析-软件工程之详细设计(补充篇)
大数据·数据结构·算法·apache·软件工程·软件构建·设计语言
计算机源码社20 小时前
分享一个基于Hadoop的二手房销售签约数据分析与可视化系统,基于Python可视化的二手房销售数据分析平台
大数据·hadoop·python·数据分析·毕业设计项目·毕业设计源码·计算机毕设选题
Direction_Wind21 小时前
Flinksql bug: Heartbeat of TaskManager with id container_XXX timed out.
大数据·flink·bug