Apache Zeppelin 整合 Spark 和 Hudi

一 环境信息

1.1 组件版本

组件 版本
Spark 3.2.3
Hudi 0.14.0
Zeppelin 0.11.0-SNAPSHOT

1.2 环境准备

  1. Zeppelin 整合 Spark 参考:Apache Zeppelin 一文打尽
  2. Hudi0.14.0编译参考:Hudi0.14.0 最新编译

二 整合 Spark 和 Hudi

2.1 配置

shell 复制代码
%spark.conf

SPARK_HOME /usr/lib/spark

# set execution mode
spark.master yarn
spark.submit.deployMode client

# --jars
spark.jars /root/app/jars/hudi-spark3.2-bundle_2.12-0.14.0.jar

# --conf
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.sql.catalog.spark_catalog org.apache.spark.sql.hudi.catalog.HoodieCatalog
spark.sql.extensions org.apache.spark.sql.hudi.HoodieSparkSessionExtension
spark.kryo.registrator org.apache.spark.HoodieSparkKryoRegistrar

Specifying yarn-client & yarn-cluster in spark.master is not supported in Spark 3.x any more, instead you need to use spark.master and spark.submit.deployMode together.

Mode spark.master spark.submit.deployMode
Yarn Client yarn client
Yarn Cluster yarn cluster

2.2 导入依赖

scala 复制代码
%spark
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.common.table.HoodieTableConfig._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.keygen.constant.KeyGeneratorOptions._
import org.apache.hudi.common.model.HoodieRecord
import spark.implicits._

2.3 插入数据

scala 复制代码
%spark
val tableName = "trips_table"
val basePath = "hdfs:///tmp/trips_table"
val columns = Seq("ts","uuid","rider","driver","fare","city")
val data =
  Seq((1695159649087L,"334e26e9-8355-45cc-97c6-c31daf0df330","rider-A","driver-K",19.10,"san_francisco"),
    (1695091554788L,"e96c4396-3fad-413a-a942-4cb36106d721","rider-C","driver-M",27.70 ,"san_francisco"),
    (1695046462179L,"9909a8b1-2d15-4d3d-8ec9-efc48c536a00","rider-D","driver-L",33.90 ,"san_francisco"),
    (1695516137016L,"e3cf430c-889d-4015-bc98-59bdce1e530c","rider-F","driver-P",34.15,"sao_paulo"    ),
    (1695115999911L,"c8abbe79-8d89-47ea-b4ce-4d224bae5bfa","rider-J","driver-T",17.85,"chennai"));

var inserts = spark.createDataFrame(data).toDF(columns:_*)
inserts.write.format("hudi").
  option(PARTITIONPATH_FIELD_NAME.key(), "city").
  option(TABLE_NAME, tableName).
  mode(Overwrite).
  save(basePath)

2.3 查询数据

scala 复制代码
%spark
val tripsDF = spark.read.format("hudi").load(basePath)
tripsDF.createOrReplaceTempView("trips_table")
spark.sql("SELECT uuid, fare, ts, rider, driver, city FROM  trips_table WHERE fare > 20.0").show()

结果:

shell 复制代码
+--------------------+-----+-------------+-------+--------+-------------+
|                uuid| fare|           ts|  rider|  driver|         city|
+--------------------+-----+-------------+-------+--------+-------------+
|e96c4396-3fad-413...| 27.7|1695091554788|rider-C|driver-M|san_francisco|
|9909a8b1-2d15-4d3...| 33.9|1695046462179|rider-D|driver-L|san_francisco|
|e3cf430c-889d-401...|34.15|1695516137016|rider-F|driver-P|    sao_paulo|
+--------------------+-----+-------------+-------+--------+-------------+

相关推荐
数据与人工智能律师8 分钟前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
Edingbrugh.南空1 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星0071 小时前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车
时序数据说3 小时前
为什么时序数据库IoTDB选择Java作为开发语言
java·大数据·开发语言·数据库·物联网·时序数据库·iotdb
Codebee3 小时前
OneCode图表配置速查手册
大数据·前端·数据可视化
Jamie201901064 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
陈敬雷-充电了么-CEO兼CTO4 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
小高不会迪斯科5 小时前
MIT 6.824学习心得(1) 浅谈分布式系统概论与MapReduce
大数据·mapreduce
TDengine (老段)5 小时前
使用 StatsD 向 TDengine 写入
java·大数据·数据库·时序数据库·iot·tdengine·涛思数据
Gauss松鼠会6 小时前
GaussDB权限管理:从RBAC到精细化控制的企业级安全实践
大数据·数据库·安全·database·gaussdb