机器学习系列6-逻辑回归

|----------------------------------------------------------|
| 重点: 1.逻辑回归模型会生成概率。 2. 对数损失是逻辑回归的损失函数。 3. 逻辑回归被许多从业者广泛使用。 |

1.逻辑回归:计算概率 **许多问题需要将概率估算值作为输出。逻辑回归是一种非常高的概率计算机制。** 实际上,您可以通过以下两种方式之一使用返回的概率: * 原样 * 已转换为二元类别。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e62e0256ba5a45a39968900685053fa7.png)

在许多情况下,您需要将逻辑回归输出映射到二元分类问题,其中目标是正确预测两个可能的标签之一(例如,"垃圾邮件"或"不是垃圾邮件")。后续模块会重点介绍这一点。

您可能想知道逻辑回归模型如何确保输出值始终介于 0 和 1 之间。巧合的是,S 型函数会产生如下具有相同特征的输出(定义如下):

S 型函数生成以下图表:


逻辑回归推断计算。

2.逻辑回归:损失和正则化

2.1.逻辑回归的损失函数

线性回归的损失函数是平方损失。逻辑回归的损失函数是对数损失,定义如下:

2.2.逻辑回归中的正则化

正则化在逻辑回归建模中极其重要。 如果不进行正则化,高逻辑维度下的逻辑回归的渐近性会不断促使损失接近 0。因此,大多数逻辑回归模型都使用以下两种策略之一来降低模型复杂性:

  • L2 正则化。
  • 早停法,即限制训练步数或学习速率。

假设您为每个示例分配一个唯一 ID,并将每个 ID 映射到其自己的特征。如果您不指定正则化函数,模型将完全过拟合。这是因为模型会尝试在所有样本上将损失降低为零,并且永远无法实现,从而将每个指示器特征的权重提高至 +无穷大或-无穷大。当有大量罕见的交叉时,仅在一个样本上发生,就会出现包含特征组合的高维度数据。

幸运的是,使用 L2 或早停法可以防止此问题出现。

相关推荐
m0_6501082433 分钟前
多模态大模型 VS. 图像视频生成模型浅析
人工智能·技术边界与协同·mllm与生成模型·技术浅谈
ai_xiaogui36 分钟前
Mac苹果版Krita AI一键安装教程:AIStarter+ComfyUI零基础部署全流程(X86/ARM双架构)
arm开发·人工智能·macos·comfyui·一键部署·ai绘画教程·kritaai
lapiii3581 小时前
[智能体设计模式] 第11章:目标设定与监控模式
人工智能·设计模式
这张生成的图像能检测吗1 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
shayudiandian1 小时前
RNN与LSTM详解:AI是如何“记住”信息的?
人工智能·rnn·lstm
美人鱼战士爱学习2 小时前
2025 Large language models for intelligent RDF knowledge graph construction
人工智能·语言模型·知识图谱
jz_ddk2 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
qinyia2 小时前
使用Wisdom SSH的AI多会话功能进行批量命令执行和跨服务器智能运维
运维·人工智能·ssh
YisquareTech2 小时前
如何实现智能补货?EDI与ERP集成打造零售库存的“自动闭环”
大数据·人工智能·零售·伊士格科技·erp集成
观远数据2 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售