【PaddleSpeech】语音合成-男声

环境安装

系统:Ubuntu >= 16.04

源码下载

  • 克隆 PaddleSpeech 仓库
bash 复制代码
# github下载
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
# 也可以从gitee下载
git clone https://gitee.com/paddlepaddle/PaddleSpeech.git

# 进入PaddleSpeech目录
cd PaddleSpeech

安装 Conda

bash 复制代码
使用apt安装 build-essential
sudo apt install build-essential


# 下载 miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -P tools/
# 安装 miniconda
bash tools/Miniconda3-latest-Linux-x86_64.sh -b
# conda 初始化
$HOME/miniconda3/bin/conda init
# 激活 conda
bash
# 创建 Conda 虚拟环境
conda create -y -p tools/venv python=3.8
# 激活 Conda 虚拟环境:
conda activate tools/venv
# 安装 Conda 包
conda install -y -c conda-forge sox libsndfile swig bzip2 libflac bc

安装 PaddlePaddle

bash 复制代码
#CPU版本安装
python3 -m pip install paddlepaddle- -i https://mirror.baidu.com/pypi/simple

#GPU版本安装,注意:2.4.1 只是一个示例,请按照对paddlepaddle的最小依赖进行选择。
python3 -m pip install paddlepaddle-gpu==2.4.1 -i https://mirror.baidu.com/pypi/simple

用开发者模式安装 PaddleSpeech

bash 复制代码
pip install pytest-runner -i https://pypi.tuna.tsinghua.edu.cn/simple 

pip install -e .[develop] -i https://pypi.tuna.tsinghua.edu.cn/simple

下载预训练模型

bash 复制代码
#下载预训练模型:声学模型、声码器
!mkdir download

#中文男声学模型
!wget -P download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_male_zh_ckpt_1.4.0.zip
!unzip -d download download/fastspeech2_male_zh_ckpt_1.4.0.zip

#声码器
!wget -P download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_male_ckpt_1.4.0.zip
!unzip -d download download/hifigan_male_ckpt_1.4.0.zip

语音合成

脚本命名为:FastSpeech2-hifigan.py

python 复制代码
import argparse
import os
from pathlib import Path
import IPython.display as dp
import matplotlib.pyplot as plt
import numpy as np
import paddle
import soundfile as sf
import yaml
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference
from paddlespeech.t2s.models.hifigan import HiFiGANGenerator
from paddlespeech.t2s.models.hifigan import HiFiGANInference
from paddlespeech.t2s.modules.normalizer import ZScore
from yacs.config import CfgNode

# 配置预训练模型
fastspeech2_config = "download/fastspeech2_male_zh_ckpt_1.4.0/default.yaml"
fastspeech2_checkpoint = "download/fastspeech2_male_zh_ckpt_1.4.0/snapshot_iter_76000.pdz"
fastspeech2_stat = "download/fastspeech2_male_zh_ckpt_1.4.0/speech_stats.npy"
hifigan_config = "download/hifigan_male_ckpt_1.4.0/default.yaml"
hifigan_checkpoint = "download/hifigan_male_ckpt_1.4.0/snapshot_iter_630000.pdz"
hifigan_stat = "download/hifigan_male_ckpt_1.4.0/feats_stats.npy"
phones_dict = "download/fastspeech2_male_zh_ckpt_1.4.0/phone_id_map.txt"
# 读取 conf 配置文件并结构化
with open(fastspeech2_config) as f:
    fastspeech2_config = CfgNode(yaml.safe_load(f))
with open(hifigan_config) as f:
    hifigan_config = CfgNode(yaml.safe_load(f))
print("========Config========")
print(fastspeech2_config)
print("---------------------")
print(hifigan_config)

# 构造文本前端对象
# 传入 phones_dict 会把相应的 phones 转换成 phone_ids
frontend = Frontend(phone_vocab_path=phones_dict)
print("Frontend done!")

# 调用文本前端
# input = "我每天中午12:00起床"
# input = "我出生于2005/11/08,那天的最低气温达到-10°C"
input = "先生您好,欢迎使用百度飞桨框架进行深度学习!"
input_ids = frontend.get_input_ids(input, merge_sentences=True, print_info=True)
phone_ids = input_ids["phone_ids"][0]
print("phone_ids:%s"%phone_ids)

# 初始化声学模型
with open(phones_dict, "r") as f:
    phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = fastspeech2_config.n_mels
model = FastSpeech2(
    idim=vocab_size, odim=odim, **fastspeech2_config["model"])
# 加载预训练模型参数
model.set_state_dict(paddle.load(fastspeech2_checkpoint)["main_params"])
# 推理阶段不启用 batch norm 和 dropout
model.eval()
stat = np.load(fastspeech2_stat)
# 读取数据预处理阶段数据集的均值和标准差
mu, std = stat
mu, std = paddle.to_tensor(mu), paddle.to_tensor(std)
# 构造归一化的新模型
fastspeech2_normalizer = ZScore(mu, std)
fastspeech2_inference = FastSpeech2Inference(fastspeech2_normalizer, model)
fastspeech2_inference.eval()
print("FastSpeech2 done!")

# 调用声学模型
with paddle.no_grad():
    mel = fastspeech2_inference(phone_ids)
print("shepe of mel (n_frames x n_mels):")
print(mel.shape)
# 绘制声学模型输出的 mel 频谱
#fig, ax = plt.subplots(figsize=(16, 6))
#im = ax.imshow(mel.T, aspect='auto',origin='lower')
#plt.title('Mel Spectrogram')
#plt.xlabel('Time')
#plt.ylabel('Frequency')
#plt.tight_layout()

# 初始化声码器
vocoder = HiFiGANGenerator(**hifigan_config["generator_params"])
# 模型加载预训练参数
vocoder.set_state_dict(paddle.load(hifigan_checkpoint)["generator_params"])
vocoder.remove_weight_norm()
# 推理阶段不启用 batch norm 和 dropout
vocoder.eval()
# 读取数据预处理阶段数据集的均值和标准差
stat = np.load(hifigan_stat)
mu, std = stat
mu, std = paddle.to_tensor(mu), paddle.to_tensor(std)
hifigan_normalizer = ZScore(mu, std)
# 构建归一化的模型
hifigan_inference = HiFiGANInference(hifigan_normalizer, vocoder)
hifigan_inference.eval()
print("HiFiGan done!")

# 调用声码器
with paddle.no_grad():
    wav = hifigan_inference(mel)
print("shepe of wav (time x n_channels):%s"%wav.shape)

# 绘制声码器输出的波形图
wave_data = wav.numpy().T
time = np.arange(0, wave_data.shape[1]) * (1.0 / fastspeech2_config.fs)
fig, ax = plt.subplots(figsize=(16, 6))
plt.plot(time, wave_data[0])
plt.title('Waveform')
plt.xlabel('Time (seconds)')
plt.ylabel('Amplitude (normed)')
plt.tight_layout()

#保存音频
sf.write(
    "output/output-male-hifigan.wav",
    wav.numpy(),
    samplerate=fastspeech2_config.fs)

运行脚本

bash 复制代码
#运行脚本前,确保有output目录,没有就手动创建一下

python3 FastSpeech2-hifigan.py

#运行成功后在output/output-male-hifigan.wav目录可以找到生成的音频文件
  1. 环境安装参考官网:https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.mdhttps://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md

2. 飞桨PaddleSpeech语音技术课程 - 飞桨AI Studio星河社区-人工智能学习与实训社区 (baidu.com)

  1. 更多模型下载

Released Models --- paddle speech 2.1 documentationhttps://paddlespeech.readthedocs.io/en/latest/released_model.html

相关推荐
AImatters3 小时前
2025 年PT展前瞻:人工智能+如何走进普通人的生活?
人工智能·ai·具身智能·智慧医疗·智慧出行·中国国际信息通信展览会·pt展
xiezhr4 小时前
一款带有AI功能的markdown工具
ai·markdown·效率工具·笔记工具
武子康10 小时前
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
人工智能·程序人生·ai·职场和发展·机器人·生活·具身智能
小鹿清扫日记10 小时前
从蛮力清扫到 “会看路”:室外清洁机器人的文明进阶
人工智能·ai·机器人·扫地机器人·具身智能·连合直租·有鹿巡扫机器人
m0_6038887111 小时前
Calibrating MLLM-as-a-judge via Multimodal Bayesian Prompt Ensembles
ai·prompt·论文速览
Lululaurel16 小时前
机器学习系统框架:核心分类、算法与应用全景解析
人工智能·算法·机器学习·ai·分类
Rysxt_19 小时前
Spring Boot 集成 Spring AI OpenAI Starter 教程
java·spring boot·后端·ai
前端农民工ws1 天前
Vue 框架的 markdown 渲染组件,针对 AI 的 markdown 流式传输场景
前端·javascript·vue.js·ai