【PaddleSpeech】语音合成-男声

环境安装

系统:Ubuntu >= 16.04

源码下载

  • 克隆 PaddleSpeech 仓库
bash 复制代码
# github下载
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
# 也可以从gitee下载
git clone https://gitee.com/paddlepaddle/PaddleSpeech.git

# 进入PaddleSpeech目录
cd PaddleSpeech

安装 Conda

bash 复制代码
使用apt安装 build-essential
sudo apt install build-essential


# 下载 miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -P tools/
# 安装 miniconda
bash tools/Miniconda3-latest-Linux-x86_64.sh -b
# conda 初始化
$HOME/miniconda3/bin/conda init
# 激活 conda
bash
# 创建 Conda 虚拟环境
conda create -y -p tools/venv python=3.8
# 激活 Conda 虚拟环境:
conda activate tools/venv
# 安装 Conda 包
conda install -y -c conda-forge sox libsndfile swig bzip2 libflac bc

安装 PaddlePaddle

bash 复制代码
#CPU版本安装
python3 -m pip install paddlepaddle- -i https://mirror.baidu.com/pypi/simple

#GPU版本安装,注意:2.4.1 只是一个示例,请按照对paddlepaddle的最小依赖进行选择。
python3 -m pip install paddlepaddle-gpu==2.4.1 -i https://mirror.baidu.com/pypi/simple

用开发者模式安装 PaddleSpeech

bash 复制代码
pip install pytest-runner -i https://pypi.tuna.tsinghua.edu.cn/simple 

pip install -e .[develop] -i https://pypi.tuna.tsinghua.edu.cn/simple

下载预训练模型

bash 复制代码
#下载预训练模型:声学模型、声码器
!mkdir download

#中文男声学模型
!wget -P download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_male_zh_ckpt_1.4.0.zip
!unzip -d download download/fastspeech2_male_zh_ckpt_1.4.0.zip

#声码器
!wget -P download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_male_ckpt_1.4.0.zip
!unzip -d download download/hifigan_male_ckpt_1.4.0.zip

语音合成

脚本命名为:FastSpeech2-hifigan.py

python 复制代码
import argparse
import os
from pathlib import Path
import IPython.display as dp
import matplotlib.pyplot as plt
import numpy as np
import paddle
import soundfile as sf
import yaml
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference
from paddlespeech.t2s.models.hifigan import HiFiGANGenerator
from paddlespeech.t2s.models.hifigan import HiFiGANInference
from paddlespeech.t2s.modules.normalizer import ZScore
from yacs.config import CfgNode

# 配置预训练模型
fastspeech2_config = "download/fastspeech2_male_zh_ckpt_1.4.0/default.yaml"
fastspeech2_checkpoint = "download/fastspeech2_male_zh_ckpt_1.4.0/snapshot_iter_76000.pdz"
fastspeech2_stat = "download/fastspeech2_male_zh_ckpt_1.4.0/speech_stats.npy"
hifigan_config = "download/hifigan_male_ckpt_1.4.0/default.yaml"
hifigan_checkpoint = "download/hifigan_male_ckpt_1.4.0/snapshot_iter_630000.pdz"
hifigan_stat = "download/hifigan_male_ckpt_1.4.0/feats_stats.npy"
phones_dict = "download/fastspeech2_male_zh_ckpt_1.4.0/phone_id_map.txt"
# 读取 conf 配置文件并结构化
with open(fastspeech2_config) as f:
    fastspeech2_config = CfgNode(yaml.safe_load(f))
with open(hifigan_config) as f:
    hifigan_config = CfgNode(yaml.safe_load(f))
print("========Config========")
print(fastspeech2_config)
print("---------------------")
print(hifigan_config)

# 构造文本前端对象
# 传入 phones_dict 会把相应的 phones 转换成 phone_ids
frontend = Frontend(phone_vocab_path=phones_dict)
print("Frontend done!")

# 调用文本前端
# input = "我每天中午12:00起床"
# input = "我出生于2005/11/08,那天的最低气温达到-10°C"
input = "先生您好,欢迎使用百度飞桨框架进行深度学习!"
input_ids = frontend.get_input_ids(input, merge_sentences=True, print_info=True)
phone_ids = input_ids["phone_ids"][0]
print("phone_ids:%s"%phone_ids)

# 初始化声学模型
with open(phones_dict, "r") as f:
    phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = fastspeech2_config.n_mels
model = FastSpeech2(
    idim=vocab_size, odim=odim, **fastspeech2_config["model"])
# 加载预训练模型参数
model.set_state_dict(paddle.load(fastspeech2_checkpoint)["main_params"])
# 推理阶段不启用 batch norm 和 dropout
model.eval()
stat = np.load(fastspeech2_stat)
# 读取数据预处理阶段数据集的均值和标准差
mu, std = stat
mu, std = paddle.to_tensor(mu), paddle.to_tensor(std)
# 构造归一化的新模型
fastspeech2_normalizer = ZScore(mu, std)
fastspeech2_inference = FastSpeech2Inference(fastspeech2_normalizer, model)
fastspeech2_inference.eval()
print("FastSpeech2 done!")

# 调用声学模型
with paddle.no_grad():
    mel = fastspeech2_inference(phone_ids)
print("shepe of mel (n_frames x n_mels):")
print(mel.shape)
# 绘制声学模型输出的 mel 频谱
#fig, ax = plt.subplots(figsize=(16, 6))
#im = ax.imshow(mel.T, aspect='auto',origin='lower')
#plt.title('Mel Spectrogram')
#plt.xlabel('Time')
#plt.ylabel('Frequency')
#plt.tight_layout()

# 初始化声码器
vocoder = HiFiGANGenerator(**hifigan_config["generator_params"])
# 模型加载预训练参数
vocoder.set_state_dict(paddle.load(hifigan_checkpoint)["generator_params"])
vocoder.remove_weight_norm()
# 推理阶段不启用 batch norm 和 dropout
vocoder.eval()
# 读取数据预处理阶段数据集的均值和标准差
stat = np.load(hifigan_stat)
mu, std = stat
mu, std = paddle.to_tensor(mu), paddle.to_tensor(std)
hifigan_normalizer = ZScore(mu, std)
# 构建归一化的模型
hifigan_inference = HiFiGANInference(hifigan_normalizer, vocoder)
hifigan_inference.eval()
print("HiFiGan done!")

# 调用声码器
with paddle.no_grad():
    wav = hifigan_inference(mel)
print("shepe of wav (time x n_channels):%s"%wav.shape)

# 绘制声码器输出的波形图
wave_data = wav.numpy().T
time = np.arange(0, wave_data.shape[1]) * (1.0 / fastspeech2_config.fs)
fig, ax = plt.subplots(figsize=(16, 6))
plt.plot(time, wave_data[0])
plt.title('Waveform')
plt.xlabel('Time (seconds)')
plt.ylabel('Amplitude (normed)')
plt.tight_layout()

#保存音频
sf.write(
    "output/output-male-hifigan.wav",
    wav.numpy(),
    samplerate=fastspeech2_config.fs)

运行脚本

bash 复制代码
#运行脚本前,确保有output目录,没有就手动创建一下

python3 FastSpeech2-hifigan.py

#运行成功后在output/output-male-hifigan.wav目录可以找到生成的音频文件
  1. 环境安装参考官网:https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.mdhttps://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md

2. 飞桨PaddleSpeech语音技术课程 - 飞桨AI Studio星河社区-人工智能学习与实训社区 (baidu.com)

  1. 更多模型下载

Released Models --- paddle speech 2.1 documentationhttps://paddlespeech.readthedocs.io/en/latest/released_model.html

相关推荐
即兴小索奇5 分钟前
AI升级社区便民服务:AI办事小程序高效办证+应急系统秒响应,告别跑腿愁住得更安心
ai·商业·ai商业洞察·即兴小索奇
咕咚-萌西1 小时前
搭建一个简单的Agent
ai·agent
TDengine (老段)3 小时前
TDengine IDMP 应用场景:电动汽车
大数据·数据库·物联网·ai·时序数据库·iot·tdengine
即兴小索奇13 小时前
2025年AI Agent规模化落地:企业级市场年增超60%,重构商业作业流程新路径
人工智能·ai·商业·ai商业洞察·即兴小索奇
亲爱的程序猿19 小时前
2025 主流 BPM 系统 AI 融合实践全景:大模型适配、核心功能与特色解析
ai·bpm·流程管理软件
网络研究院20 小时前
AI代理需要数据完整性
人工智能·ai·数据·代理·完整性
CoderJia程序员甲21 小时前
GitHub 热榜项目 - 日榜(2025-08-24)
ai·开源·github·开源项目·github热榜
TDengine (老段)21 小时前
TDengine IDMP 运维指南(管理策略)
大数据·数据库·物联网·ai·时序数据库·tdengine·涛思数据
CoderJia程序员甲1 天前
GitHub 热榜项目 - 日榜(2025-08-19)
ai·开源·github·开源项目·github热榜
CHEN5_021 天前
时序数据库选型“下半场”:从性能竞赛到生态博弈,四大主流架构深度横评
数据库·人工智能·ai·架构·时序数据库