Python||五城P.M.2.5数据分析与可视化_使用华夫图分析各个城市的情况(上)

目录

五城P.M.2.5数据分析与可视化------北京市、上海市、广州市、沈阳市、成都市,使用华夫图分析各个城市的情况

1.北京市的空气质量

2.广州市的空气质量

【上海市和成都市空气质量情况详见下期】

五城P.M.2.5数据分析与可视化------北京市、上海市、广州市、沈阳市、成都市,使用华夫图分析各个城市的情况

1.北京市的空气质量

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
#读入文件
bj = pd.read_csv('./Beijing.csv')
fig = plt.figure(dpi=100,figsize=(5,5))

def good(pm):
    #优
    degree = []
    for i in pm:
        if 0 < i <= 35:
            degree.append(i)
    return degree
def moderate(pm):
    #良
    degree = []
    for i in pm:
        if 35 < i <= 75:
            degree.append(i)
    return degree
def lightlyP(pm):
    #轻度污染
    degree = []
    for i in pm:
        if 75 < i <= 115:
            degree.append(i)
    return degree
def moderatelyP(pm):
    #中度污染
    degree = []
    for i in pm:
        if 115 < i <= 150:
            degree.append(i)
    return degree
def heavilyP(pm):
    #重度污染
    degree = []
    for i in pm:
        if 150 < i <= 250:
            degree.append(i)
    return degree
def severelyP(pm):
    #严重污染
    degree = []
    for i in pm:
        if 250 < i:
            degree.append(i)
    return degree
def PM(bj,str3):
    bj_dist_pm = bj.loc[:, [str3]]
    bj_dist1_pm = bj_dist_pm.dropna(axis=0, subset=[str3])
    bj_dist1_pm = np.array(bj_dist1_pm[str3])
    bj_good_count = len(good(bj_dist1_pm))
    bj_moderate_count = len(moderate(bj_dist1_pm))
    bj_lightlyP_count = len(lightlyP(bj_dist1_pm))
    bj_moderatelyP_count = len(moderatelyP(bj_dist1_pm))
    bj_heavilyP_count = len(heavilyP(bj_dist1_pm))
    bj_severelyP_count = len(severelyP(bj_dist1_pm))
    a = {'优':bj_good_count,'良':bj_moderate_count,'轻度污染':bj_lightlyP_count,'中度污染':bj_moderatelyP_count,'重度污染':bj_heavilyP_count,'严重污染':bj_severelyP_count}
    pm = pd.DataFrame(pd.Series(a),columns=['daysum'])
    pm = pm.reset_index().rename(columns={'index':'level'})
    return pm
#北京
#PM_Dongsi列
bj_ds = PM(bj,'PM_Dongsi')
PMday_Dongsi = np.array(bj_ds['daysum'])
#PM_Dongsihuan列
bj_dsh = PM(bj,'PM_Dongsihuan')
PMday_Dongsihuan = np.array(bj_dsh['daysum'])
#PM_Nongzhanguan列
bj_nzg = PM(bj,'PM_Nongzhanguan')
PMday_Nongzhanguan = np.array(bj_nzg['daysum'])
bj_pm_daysum = (PMday_Dongsi+PMday_Dongsihuan+PMday_Nongzhanguan)/3
sum = 0
for i in bj_pm_daysum:
    sum += i
bj_pm_daysum1 = np.array(bj_pm_daysum)

data = {'优':int((bj_pm_daysum[0]/sum)*100), '良':int((bj_pm_daysum[1]/sum)*100), '轻度污染': int(bj_pm_daysum[2]/sum*100),'中度污染':int((bj_pm_daysum[3]/sum)*100),'重度污染':int((bj_pm_daysum[4]/sum)*100),'严重污染':int((bj_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(
    FigureClass=Waffle,
    rows = 5,   # 列数自动调整
    values = data,
    # 设置title
    title = {
        'label': "北京市污染情况",
        'loc': 'center',
        'fontdict':{
            'fontsize': 13,
        }
    },
    labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],
    # 设置标签图例的样式
    legend = {
        'loc': 'lower left',
        'bbox_to_anchor': (0, -0.4),
        'ncol': len(data),
        'framealpha': 0,
        'fontsize': 6
    },
    dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()

北京市总体空气质量差,有约16%的轻度污染,约12%的重度污染和6%的严重污染,中度污染的比例也相对较大,占比约9%。

2.广州市的空气质量

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
import math
#读入文件
gz = pd.read_csv('./Guangzhou.csv')
fig = plt.figure(dpi=100,figsize=(5,5))


def good(pm):
    #优
    degree = []
    for i in pm:
        if 0 < i <= 35:
            degree.append(i)
    return degree
def moderate(pm):
    #良
    degree = []
    for i in pm:
        if 35 < i <= 75:
            degree.append(i)
    return degree
def lightlyP(pm):
    #轻度污染
    degree = []
    for i in pm:
        if 75 < i <= 115:
            degree.append(i)
    return degree
def moderatelyP(pm):
    #中度污染
    degree = []
    for i in pm:
        if 115 < i <= 150:
            degree.append(i)
    return degree
def heavilyP(pm):
    #重度污染
    degree = []
    for i in pm:
        if 150 < i <= 250:
            degree.append(i)
    return degree
def severelyP(pm):
    #严重污染
    degree = []
    for i in pm:
        if 250 < i:
            degree.append(i)
    return degree

def PM(gz,str3):
    gz_dist_pm = gz.loc[:, [str3]]
    gz_dist1_pm = gz_dist_pm.dropna(axis=0, subset=[str3])
    gz_dist1_pm = np.array(gz_dist1_pm[str3])
    gz_good_count = len(good(gz_dist1_pm))
    gz_moderate_count = len(moderate(gz_dist1_pm))
    gz_lightlyP_count = len(lightlyP(gz_dist1_pm))
    gz_moderatelyP_count = len(moderatelyP(gz_dist1_pm))
    gz_heavilyP_count = len(heavilyP(gz_dist1_pm))
    gz_severelyP_count = len(severelyP(gz_dist1_pm))
    a = {'优':gz_good_count,'良':gz_moderate_count,'轻度污染':gz_lightlyP_count,'中度污染':gz_moderatelyP_count,'重度污染':gz_heavilyP_count,'严重污染':gz_severelyP_count}
    pm = pd.DataFrame(pd.Series(a),columns=['daysum'])
    pm = pm.reset_index().rename(columns={'index':'level'})
    return pm
#广州
#PM_City Station列
gz_cs = PM(gz,'PM_City Station')
PMday_CityStation = np.array(gz_cs['daysum'])
#PM_5th Middle School列
gz_ms = PM(gz,'PM_5th Middle School')
PMday_5thMiddleSchool = np.array(gz_ms['daysum'])
gz_pm_daysum = (PMday_CityStation+PMday_5thMiddleSchool)/2
sum = 0
for i in gz_pm_daysum:
    sum += i
gz_pm_daysum1 = np.array(gz_pm_daysum)

data = {'优':int((gz_pm_daysum[0]/sum)*100), '良':int((gz_pm_daysum[1]/sum)*100), '轻度污染': int(gz_pm_daysum[2]/sum*100),'中度污染':int((gz_pm_daysum[3]/sum)*100),'重度污染':int((gz_pm_daysum[4]/sum)*100),'严重污染':int((gz_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(
    FigureClass=Waffle,
    rows = 5,   # 列数自动调整
    values = data,
    # 设置title
    title = {
        'label': "广州市污染情况",
        'loc': 'center',
        'fontdict':{
            'fontsize': 13,
        }
    },
    labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],
    # 设置标签图例的样式
    legend = {
        'loc': 'lower left',
        'bbox_to_anchor': (0, -0.4),
        'ncol': len(data),
        'framealpha': 0,
        'fontsize': 6
    },
    dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()

广州市总体空气质量优秀,优和良的空气质量占比超过80%,严重污染的天气情况少之甚少,污染天气------轻度污染、中度污染、重度污染和严重污染占比总和不超过20%。

【上海市和成都市空气质量情况详见下期】

相关推荐
冷雨夜中漫步7 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴8 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再8 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
李慕婉学姐8 小时前
【开题答辩过程】以《基于社交网络用户兴趣大数据分析》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
数据挖掘·数据分析
m0_736919109 小时前
C++代码风格检查工具
开发语言·c++·算法
喵手10 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_9449347310 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy10 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
黎雁·泠崖10 小时前
【魔法森林冒险】5/14 Allen类(三):任务进度与状态管理
java·开发语言
2301_7634724611 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法