transformer剪枝论文汇总

文章目录

NN Pruning

《Block Pruning For Faster Transformers》

《为更快的transformer进行块修剪》

摘要

预训练提高了模型在分类和生成任务的精度,但缺点是成本较高,性能慢;

剪枝是一种减少模型大小的有效方法;

论文引入了块剪枝方法,为了得到小且快的模型。通过将任意大小的块剪枝集成到运动剪枝微调范式中;

实验在分类和生成任务,得到剪枝后的模型2.4x更快,74%更小的BERT在SQuAD v1,F1仅下降1%,与其他蒸馏模型相比速度更快,与其他剪枝模型相比模型更小。

实验

论文地址
github地址1
github地址2

FFN剪枝 attention heads剪枝

大模型剪枝

LLM-Pruner

《LLM-Pruner: On the Structural Pruning of Large Language Models》

《LLM-Pruner: 大语言模型结构化剪枝》

github地址

SparseGPT

《SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot》

《SparseGPT:大规模语言模型可以一次精确剪枝》
github地址

LTP

《Learned Token Pruning for Transformers》

《transformer的Token修剪学习》
github地址

VTP

《Vision Transformer Pruning》

稀疏 剪枝 finetune

剪维度,Dimension Pruning

Width & Depth Pruning

《Width & Depth Pruning for Vision Transformers》

剪维度,剪深度

Patch Slimming

《 Patch Slimming for Efficient Vision Transformers》

《高效视觉transformer的块瘦身》

剪patch

DynamicViT

《DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification》

《DynamicViT:具有动态Token稀疏化的高效视觉transformer》
github地址

token 剪枝: 在MSA和MLP后面添加一个轻量化的注意力模块来动态的识别不重要的patch

SPViT

《Pruning Self-attentions into Convolutional Layers in Single Path》

《在Single Path中将自注意力剪枝成卷积层》
github地址

核心思想是nas,过预训练好的nsa的权重来初始化得到对应卷积的权重,达到一种权重共享的方法

DynamicBERT

《DynaBERT: Dynamic BERT with Adaptive Width and Depth》

《DynaBERT: 具有自适应宽度和深度的动态BERT》

github地址

深度 和宽度 剪枝;

训练时,对宽度和深度进行裁剪,训练不同的子网络

推理时,根据速度需要直接裁剪,用裁剪后的子网络进行预测

ViT Slimming

《Vision Transformer Slimming: Multi-Dimension Searching in continuous optimization space》

《视觉Transformer瘦身:连续优化空间中的多维搜索》
github地址

只需训练 / 搜索一次,就可以通过排序 mask 得到无数个子网络

FastFormers

《FastFormers: Highly Efficient Transformer Models

for Natural Language Understanding》
github 地址

step1:蒸馏

step2:剪枝

step3: 量化

NViT

《NViT: Vision Transformer Compression and Parameter Redistribution》

(2021)

剪枝规则分为三步:

  1. 确定剪枝的空间
  2. 通过建立全局重要性分数ranking,迭代地进行全局结构剪枝。
  3. 观察剪枝后网络结构的维度变化趋势,进行参数重分配,得到最终的NViT

UVC

《UNIFIED VISUAL TRANSFORMER COMPRESSION》

《统一视觉transformer压缩》

github地址

Post-training pruning

《A Fast Post-Training Pruning Framework for Transformers》

《transformer 快速后训练剪枝框架》
github地址

相关推荐
背太阳的牧羊人3 小时前
tokenizer.encode_plus,BERT类模型 和 Sentence-BERT 他们之间的区别与联系
人工智能·深度学习·bert
学算法的程霖3 小时前
TGRS | FSVLM: 用于遥感农田分割的视觉语言模型
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·遥感图像分类
jzwei0235 小时前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
白熊1885 小时前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉
强化学习与机器人控制仿真6 小时前
Newton GPU 机器人仿真器入门教程(零)— NVIDIA、DeepMind、Disney 联合推出
开发语言·人工智能·python·stm32·深度学习·机器人·自动驾驶
妄想成为master7 小时前
快速入门深度学习系列(2)----损失函数、逻辑回归、向量化
人工智能·深度学习·神经网络
开心星人7 小时前
【论文阅读】Reconstructive Neuron Pruning for Backdoor Defense
论文阅读·算法·剪枝
小草cys9 小时前
查看YOLO版本的三种方法
人工智能·深度学习·yolo
西红柿土豆丶11 小时前
基于Flask、Bootstrap及深度学习的水库智能监测分析平台
人工智能·python·深度学习·flask·bootstrap
zylyyyyyy11 小时前
DEEPPOLAR:通过深度学习发明非线性大核极坐标码(2)
人工智能·深度学习·信息与通信·polar码·译码