神经网络之交叉熵与 Softmax 的梯度计算

🧠 目标

我们要计算的是:

给定模型输出 logits z=[z1,z2,...,zC]\mathbf{z} = [z_1, z_2, ..., z_C]z=[z1,z2,...,zC],Softmax 后得到预测概率 y^=[y^1,...,y^C]\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_C]y^=[y^1,...,y^C],交叉熵损失函数为:

L=−∑i=1Cyilog⁡(y^i) L = -\sum_{i=1}^C y_i \log(\hat{y}_i) L=−i=1∑Cyilog(y^i)

我们要推导损失对 z\mathbf{z}z 的梯度,也就是:

∂L∂zj \frac{\partial L}{\partial z_j} ∂zj∂L


📘 步骤概览:

  1. 定义 softmax:

    y^i=ezi∑k=1Cezk \hat{y}i = \frac{e^{z_i}}{\sum{k=1}^C e^{z_k}} y^i=∑k=1Cezkezi

  2. 定义交叉熵:

    L=−∑i=1Cyilog⁡(y^i) L = -\sum_{i=1}^C y_i \log(\hat{y}_i) L=−i=1∑Cyilog(y^i)

  3. 合并并对 zjz_jzj 求导:


🧮 步骤一:对 softmax 求导

对于 softmax 输出的 y^i\hat{y}_iy^i,对 zjz_jzj 求导:

  • 当 i=ji = ji=j 时:

∂y^i∂zj=y^i(1−y^i) \frac{\partial \hat{y}_i}{\partial z_j} = \hat{y}_i (1 - \hat{y}_i) ∂zj∂y^i=y^i(1−y^i)

  • 当 i≠ji \ne ji=j 时:

∂y^i∂zj=−y^iy^j \frac{\partial \hat{y}_i}{\partial z_j} = -\hat{y}_i \hat{y}_j ∂zj∂y^i=−y^iy^j

或者统一地写成:

∂y^i∂zj=y^i(δij−y^j) \frac{\partial \hat{y}_i}{\partial z_j} = \hat{y}i (\delta{ij} - \hat{y}_j) ∂zj∂y^i=y^i(δij−y^j)

其中 δij\delta_{ij}δij 是 Kronecker delta,若 i=ji = ji=j 则为 1,否则为 0。


🧮 步骤二:对损失函数求导

回忆损失函数:

L=−∑i=1Cyilog⁡(y^i) L = -\sum_{i=1}^C y_i \log(\hat{y}_i) L=−i=1∑Cyilog(y^i)

对 zjz_jzj 求导(链式法则):

∂L∂zj=−∑i=1Cyi⋅1y^i⋅∂y^i∂zj \frac{\partial L}{\partial z_j} = -\sum_{i=1}^C y_i \cdot \frac{1}{\hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial z_j} ∂zj∂L=−i=1∑Cyi⋅y^i1⋅∂zj∂y^i

代入 softmax 的导数:

∂L∂zj=−∑i=1Cyi⋅1y^i⋅y^i(δij−y^j)=−∑i=1Cyi(δij−y^j) \frac{\partial L}{\partial z_j} = -\sum_{i=1}^C y_i \cdot \frac{1}{\hat{y}i} \cdot \hat{y}i (\delta{ij} - \hat{y}j) = -\sum{i=1}^C y_i (\delta{ij} - \hat{y}_j) ∂zj∂L=−i=1∑Cyi⋅y^i1⋅y^i(δij−y^j)=−i=1∑Cyi(δij−y^j)

展开求和:

∂L∂zj=−yj(1−y^j)+∑i≠jyiy^j \frac{\partial L}{\partial z_j} = -y_j (1 - \hat{y}j) + \sum{i \ne j} y_i \hat{y}_j ∂zj∂L=−yj(1−y^j)+i=j∑yiy^j

由于 ∑i≠jyi=1−yj\sum_{i \ne j} y_i = 1 - y_j∑i=jyi=1−yj,可化简为:

∂L∂zj=y^j−yj \frac{\partial L}{\partial z_j} = \hat{y}_j - y_j ∂zj∂L=y^j−yj


✅ 结论:最终梯度公式

∂L∂zj=y^j−yj \boxed{ \frac{\partial L}{\partial z_j} = \hat{y}_j - y_j } ∂zj∂L=y^j−yj

也就是说,Softmax + 交叉熵一起用时,最终反向传播时的梯度是预测概率减去真实标签


📌 优点

  • 数值稳定 :因为常用实现将 Softmax + CrossEntropy 合并在一起(如 PyTorch 中的 CrossEntropyLoss),避免了显式计算 log(softmax(x)),从而防止 underflow/overflow。
  • 高效:只需要一减法操作,计算非常快。
  • 简单清晰:可以直接用误差向量反向传播。
相关推荐
一个处女座的程序猿20 小时前
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
人工智能·自然语言处理·小语言模型·slms
档案宝档案管理1 天前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT1 天前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8241 天前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_1 天前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年1 天前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus1 天前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^1 天前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz1 天前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究1 天前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习