Flink大状态和Checkpoint调优

文章迁移,待整理

2. 状态和Checkpoint调优

2.1 大状态调优

我们生产大多数会使用 fsState ,memState程序挂了状态就丢了,应该没人会在生产使用,但是涉及到一些大状态,fsState效率很低,这时候会选择 rocksDbState

  1. RocksDb 为什么效率高

基于 LSM Tree 实现,类似 Hbase 的读写方式,

复制代码
state.backend.local-recovery: true

写数据内存即返回,查数据先查 blockCache,

  1. 开启 state 性能访问监控

开启监控会对性能有影响,但是对 rocksDbStateBackend 来说影响不大,大概 1%,但是有监控可以快速定位问题

java 复制代码
-Dstate.backend.latency-track.keyed-state-enabled=true
  1. 开启增量检查点

    state.backend.incremental: true #默认 false,改为 true。

  2. 开启本地恢复

Flink任务失败时,可以基于本地的状态信息恢复任务

复制代码
state.backend.incremental: true #默认 false,改为 true。
  1. 多目录设置

有多块磁盘,可以考虑设置多目录

复制代码
state.backend.rocksdb.localdir: 
/data1/flink/rocksdb,/data2/flink/rocksdb,/data3/flink/rocksdb

2.2 checkpoint 间隔时长设置

一般checkpoint 间隔时长设置为 1-5分钟,比如阿里云我们都使用默认的 180S,但是对于一些大状态尤其是 Hdfs 储存时比较慢,可以设置 5-10分钟,并且设置两次 Checkpoint 至少间隔 4-8分钟

相关推荐
阿里云大数据AI技术20 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工2 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5