Flink大状态和Checkpoint调优

文章迁移,待整理

2. 状态和Checkpoint调优

2.1 大状态调优

我们生产大多数会使用 fsState ,memState程序挂了状态就丢了,应该没人会在生产使用,但是涉及到一些大状态,fsState效率很低,这时候会选择 rocksDbState

  1. RocksDb 为什么效率高

基于 LSM Tree 实现,类似 Hbase 的读写方式,

复制代码
state.backend.local-recovery: true

写数据内存即返回,查数据先查 blockCache,

  1. 开启 state 性能访问监控

开启监控会对性能有影响,但是对 rocksDbStateBackend 来说影响不大,大概 1%,但是有监控可以快速定位问题

java 复制代码
-Dstate.backend.latency-track.keyed-state-enabled=true
  1. 开启增量检查点

    state.backend.incremental: true #默认 false,改为 true。

  2. 开启本地恢复

Flink任务失败时,可以基于本地的状态信息恢复任务

复制代码
state.backend.incremental: true #默认 false,改为 true。
  1. 多目录设置

有多块磁盘,可以考虑设置多目录

复制代码
state.backend.rocksdb.localdir: 
/data1/flink/rocksdb,/data2/flink/rocksdb,/data3/flink/rocksdb

2.2 checkpoint 间隔时长设置

一般checkpoint 间隔时长设置为 1-5分钟,比如阿里云我们都使用默认的 180S,但是对于一些大状态尤其是 Hdfs 储存时比较慢,可以设置 5-10分钟,并且设置两次 Checkpoint 至少间隔 4-8分钟

相关推荐
Hello World......1 小时前
Java求职面试:从核心技术到大数据与AI的场景应用
大数据·java面试·技术栈·互联网大厂·ai服务
张伯毅2 小时前
Flink SQL 将kafka topic的数据写到另外一个topic里面
sql·flink·kafka
python算法(魔法师版)3 小时前
.NET NativeAOT 指南
java·大数据·linux·jvm·.net
星川皆无恙3 小时前
大模型学习:Deepseek+dify零成本部署本地运行实用教程(超级详细!建议收藏)
大数据·人工智能·学习·语言模型·架构
L耀早睡3 小时前
mapreduce打包运行
大数据·前端·spark·mapreduce
姬激薄4 小时前
MapReduce打包运行
大数据·mapreduce
计算机人哪有不疯的4 小时前
Mapreduce初使用
大数据·mapreduce
菜鸟冲锋号4 小时前
Flink SQL、Hudi 、Doris在数据上的组合应用
大数据·flink
尘世壹俗人4 小时前
hadoop.proxyuser.代理用户.授信域 用来干什么的
大数据·hadoop·分布式
鸿乃江边鸟6 小时前
Starrocks的主键表涉及到的MOR Delete+Insert更新策略
大数据·starrocks·sql