数据分析基础之《pandas(6)—高级处理》

一、缺失值处理

1、如何处理nan

两种思路:

(1)如果样本量很大,可以删除含有缺失值的样本

(2)如果要珍惜每一个样本,可以替换/插补(计算平均值或中位数)

2、判断数据是否为nan

(1)pd.isnull(df)

返回一堆布尔值,False不是缺失值,True是缺失值

(2)pd.notnull(df)

返回一堆布尔值,True不是缺失值,False是缺失值

3、缺失值处理方式

存在缺失值nan,并且是np.nan

(1)dropna(axis='rows', inplace=False)

删除存在缺失值

默认不替换原数据,返回新数据,inplace=True修改原数据

(2)fillna(value, inplace=True)

替换缺失值

说明:

value:替换成的值

inplace:

True:会修改原数据

False:不替换修改原数据,生成新的对象

(3)缺失值不是nan,是其他标记的

后面再说

二、缺失值处理实例

1、电影数据文件获取

python 复制代码
import pandas as pd

movie = pd.read_csv("./IMDB-Movie-Data.csv")

movie

import numpy as np

# 判断是否存在缺失值
np.any(pd.isnull(movie))

np.all(pd.notnull(movie))

# 用dataframe的any方法
pd.isnull(movie).any() # 返回每一个字段是否有缺失值

# 用dataframe的all方法
pd.notnull(movie).all()

# 用dataframe的isnull方法
movie.isnull().sum()

2、删除含有缺失值的样本

python 复制代码
# 缺失值处理
# 删除含有缺失值的样本
data1 = movie.dropna()

data1.isnull().sum()
相关推荐
yousuotu18 小时前
基于 Python 实现亚马逊销售数据分析
数据挖掘·数据分析
Tiger Z18 小时前
《R for Data Science (2e)》免费中文翻译 (第15章) --- Regular expression(1)
数据分析·r语言·数据科学·免费书籍
镜舟科技19 小时前
活动回顾 | 镜舟科技出席鲲鹏开发者创享日・北京站
starrocks·数据分析·开源·数字化转型·华为鲲鹏·lakehouse·镜舟科技
Aloudata19 小时前
大火的 ChatBI,是如何实现灵活的自然语言数据分析?
数据挖掘·数据分析·chatbi·dataagent·自然语言问数
方圆工作室20 小时前
纯HTML/CSS健康数据分析平台
css·数据分析·html
free-elcmacom20 小时前
Python实战项目<3>赛制分数分析
开发语言·前端·python·数据分析
未来魔导1 天前
go语言中json操作总结(下)
数据分析·go·json
Mia@2 天前
数据分析(一)
数据挖掘·数据分析
小辉懂编程2 天前
数据分析入门:使用pandas进行数据处理 (数据读取,数据清洗,数据处理,数据可视化)
数据挖掘·数据分析·pandas
祝威廉2 天前
摘下数据分析的皇冠:机器学习,InfiniSynapse 金融评分卡案例
人工智能·机器学习·金融·数据挖掘·数据分析