数据分析基础之《pandas(6)—高级处理》

一、缺失值处理

1、如何处理nan

两种思路:

(1)如果样本量很大,可以删除含有缺失值的样本

(2)如果要珍惜每一个样本,可以替换/插补(计算平均值或中位数)

2、判断数据是否为nan

(1)pd.isnull(df)

返回一堆布尔值,False不是缺失值,True是缺失值

(2)pd.notnull(df)

返回一堆布尔值,True不是缺失值,False是缺失值

3、缺失值处理方式

存在缺失值nan,并且是np.nan

(1)dropna(axis='rows', inplace=False)

删除存在缺失值

默认不替换原数据,返回新数据,inplace=True修改原数据

(2)fillna(value, inplace=True)

替换缺失值

说明:

value:替换成的值

inplace:

True:会修改原数据

False:不替换修改原数据,生成新的对象

(3)缺失值不是nan,是其他标记的

后面再说

二、缺失值处理实例

1、电影数据文件获取

python 复制代码
import pandas as pd

movie = pd.read_csv("./IMDB-Movie-Data.csv")

movie

import numpy as np

# 判断是否存在缺失值
np.any(pd.isnull(movie))

np.all(pd.notnull(movie))

# 用dataframe的any方法
pd.isnull(movie).any() # 返回每一个字段是否有缺失值

# 用dataframe的all方法
pd.notnull(movie).all()

# 用dataframe的isnull方法
movie.isnull().sum()

2、删除含有缺失值的样本

python 复制代码
# 缺失值处理
# 删除含有缺失值的样本
data1 = movie.dropna()

data1.isnull().sum()
相关推荐
TG_yunshuguoji7 小时前
亚马逊云代理:利用亚马逊云进行大规模数据分析与处理的最佳实践
服务器·数据挖掘·数据分析·云计算·aws
B站_计算机毕业设计之家7 小时前
机器学习:基于大数据的基金数据分析可视化系统 股票数据 金融数据 股价 Django框架 大数据技术(源码) ✅
大数据·python·金融·数据分析·股票·etf·基金
平谷一勺18 小时前
数据清洗-缺失值的处理
python·数据分析
gddkxc21 小时前
AI CRM中的数据分析:悟空AI CRM如何帮助企业优化运营
人工智能·信息可视化·数据分析
派可数据BI可视化1 天前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
kida_yuan1 天前
【Java】基于 Tabula 的 PDF 合并单元格内容提取
java·数据分析
Juchecar1 天前
冷知识:“撞音”化学元素知多少
数据分析
我要学习别拦我~2 天前
热力图:从逸出数据到宏观模式识别
信息可视化·数据分析
SirLancelot12 天前
StarRocks-基本介绍(一)基本概念、特点、适用场景
大数据·数据库·数据仓库·sql·数据分析·database·数据库架构
阿里云大数据AI技术2 天前
云栖实录|Hologres 4.0全新发布:AI时代的一站式多模态分析平台
数据分析