代码随想录算法训练营第三十六天|背包问题

01背包问题 二维

代码随想录

视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

java 复制代码
public class BagProblem {
    public static void main(String[] args) {
        int[] weight = {1,3,4};
        int[] value = {15,20,30};
        int bagSize = 4;
        testWeightBagProblem(weight,value,bagSize);
    }

    /**
     * 动态规划获得结果
     * @param weight  物品的重量
     * @param value   物品的价值
     * @param bagSize 背包的容量
     */
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){

        // 创建dp数组
        int goods = weight.length;  // 获取物品的数量
        int[][] dp = new int[goods][bagSize + 1];

        // 初始化dp数组
        // 创建数组后,其中默认的值就是0
        for (int j = weight[0]; j <= bagSize; j++) {
            dp[0][j] = value[0];
        }

        // 填充dp数组
        for (int i = 1; i < weight.length; i++) {
            for (int j = 1; j <= bagSize; j++) {
                if (j < weight[i]) {
                    /**
                     * 当前背包的容量都没有当前物品i大的时候,是不放物品i的
                     * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
                     */
                    dp[i][j] = dp[i-1][j];
                } else {
                    /**
                     * 当前背包的容量可以放下物品i
                     * 那么此时分两种情况:
                     *    1、不放物品i
                     *    2、放物品i
                     * 比较这两种情况下,哪种背包中物品的最大价值最大
                     */
                    dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
                }
            }
        }

        // 打印dp数组
        for (int i = 0; i < goods; i++) {
            for (int j = 0; j <= bagSize; j++) {
                System.out.print(dp[i][j] + "\t");
            }
            System.out.println("\n");
        }
    }
}

01背包问题 一维

代码随想录

视频讲解:带你学透01背包问题(滚动数组篇) | 从此对背包问题不再迷茫!_哔哩哔哩_bilibili

java 复制代码
public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWight = 4;
        testWeightBagProblem(weight, value, bagWight);
    }

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++){
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++){
            System.out.print(dp[j] + " ");
        }
    }
  1. 分割等和子集

本题是 01背包的应用类题目

代码随想录

视频讲解:动态规划之背包问题,这个包能装满吗?| LeetCode:416.分割等和子集_哔哩哔哩_bilibili

java 复制代码
class Solution {
    public boolean canPartition(int[] nums) {
        //1.容量为j的背包,最大能承载的价值为dp[j] (转化为背包问题重量和价值相同)
        //2.dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
        //3.dp[0] = 0, 初始化为非负整数最小值0
        //4.先遍历物品,在遍历背包
        if (nums == null || nums.length == 0) return false;
        int n = nums.length;
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        if (sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for (int i = 0; i < n; i++) {
            for (int j = target; j >= nums[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        return dp[target] == target;
    }
}
相关推荐
cleverpeople1 小时前
11.15作业
c语言·开发语言·算法
Seeklike1 小时前
11.14 机器学习-朴素贝叶斯+决策树算法
算法·决策树·机器学习
徐浪老师3 小时前
深入解析贪心算法及其应用实例
算法·贪心算法
软行3 小时前
LeetCode 单调栈 下一个更大元素 I
c语言·数据结构·算法·leetcode
钰爱&4 小时前
【操作系统】Linux之线程同步二(头歌作业)
linux·运维·算法
Ws_4 小时前
leetcode LCR 068 搜索插入位置
数据结构·python·算法·leetcode
灼华十一4 小时前
数据结构-布隆过滤器和可逆布隆过滤器
数据结构·算法·golang
adam_life5 小时前
OpenJudge_ 简单英文题_04:0/1 Knapsack
算法·动态规划
龙的爹23336 小时前
论文翻译 | The Capacity for Moral Self-Correction in Large Language Models
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·prompt
鸣弦artha7 小时前
蓝桥杯——杨辉三角
java·算法·蓝桥杯·eclipse