代码随想录算法训练营第三十六天|背包问题

01背包问题 二维

代码随想录

视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

java 复制代码
public class BagProblem {
    public static void main(String[] args) {
        int[] weight = {1,3,4};
        int[] value = {15,20,30};
        int bagSize = 4;
        testWeightBagProblem(weight,value,bagSize);
    }

    /**
     * 动态规划获得结果
     * @param weight  物品的重量
     * @param value   物品的价值
     * @param bagSize 背包的容量
     */
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){

        // 创建dp数组
        int goods = weight.length;  // 获取物品的数量
        int[][] dp = new int[goods][bagSize + 1];

        // 初始化dp数组
        // 创建数组后,其中默认的值就是0
        for (int j = weight[0]; j <= bagSize; j++) {
            dp[0][j] = value[0];
        }

        // 填充dp数组
        for (int i = 1; i < weight.length; i++) {
            for (int j = 1; j <= bagSize; j++) {
                if (j < weight[i]) {
                    /**
                     * 当前背包的容量都没有当前物品i大的时候,是不放物品i的
                     * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
                     */
                    dp[i][j] = dp[i-1][j];
                } else {
                    /**
                     * 当前背包的容量可以放下物品i
                     * 那么此时分两种情况:
                     *    1、不放物品i
                     *    2、放物品i
                     * 比较这两种情况下,哪种背包中物品的最大价值最大
                     */
                    dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
                }
            }
        }

        // 打印dp数组
        for (int i = 0; i < goods; i++) {
            for (int j = 0; j <= bagSize; j++) {
                System.out.print(dp[i][j] + "\t");
            }
            System.out.println("\n");
        }
    }
}

01背包问题 一维

代码随想录

视频讲解:带你学透01背包问题(滚动数组篇) | 从此对背包问题不再迷茫!_哔哩哔哩_bilibili

java 复制代码
public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWight = 4;
        testWeightBagProblem(weight, value, bagWight);
    }

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++){
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++){
            System.out.print(dp[j] + " ");
        }
    }
  1. 分割等和子集

本题是 01背包的应用类题目

代码随想录

视频讲解:动态规划之背包问题,这个包能装满吗?| LeetCode:416.分割等和子集_哔哩哔哩_bilibili

java 复制代码
class Solution {
    public boolean canPartition(int[] nums) {
        //1.容量为j的背包,最大能承载的价值为dp[j] (转化为背包问题重量和价值相同)
        //2.dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
        //3.dp[0] = 0, 初始化为非负整数最小值0
        //4.先遍历物品,在遍历背包
        if (nums == null || nums.length == 0) return false;
        int n = nums.length;
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        if (sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for (int i = 0; i < n; i++) {
            for (int j = target; j >= nums[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        return dp[target] == target;
    }
}
相关推荐
前端炒粉1 天前
18.矩阵置零(原地算法)
javascript·线性代数·算法·矩阵
暴风鱼划水1 天前
三维重建【0-D】3D Gaussian Splatting:相机标定原理与步骤
算法·3d
mount_myj1 天前
敏感信息屏蔽(一)【java】
java·算法·极课堂
先做个垃圾出来………1 天前
偏移量解释
数据结构·算法
FanXing_zl1 天前
基于整数MCU的FOC控制定标策略深度解析
单片机·嵌入式硬件·mcu·算法·定点运算·q15
立志成为大牛的小牛1 天前
数据结构——三十三、Dijkstra算法(王道408)
数据结构·笔记·学习·考研·算法·图论
地平线开发者1 天前
mul 与 reduce_sum 的优化实例
算法·自动驾驶
坚持编程的菜鸟1 天前
LeetCode每日一题——Pow(x, n)
c语言·算法·leetcode
csdn_aspnet1 天前
分享MATLAB在数据分析与科学计算中的高效算法案例
算法·matlab·数据分析