【flink状态管理(四)】MemoryStateBackend的实现

文章目录

在Flink中,默认的StateBackend实现为MemoryStateBackend,本文以MemoryStateBackend为例说明StateBackend的设计与实现。

本文介绍MemoryStateBackend中如下三个主要组件的创建过程:

  • HeapKeyedStateBackend
  • OperatorStateBackend
  • MemoryBackendCheckpointStorage

FsStateBackend和RocksDBStateBackend这两种状态后端存储的实现,功能和MemoryStateBackend类似,区别在于内部创建的KeyedStateBackend和CheckpointStorage。

1.基于MemoryStateBackend创建KeyedStateBackend

1.1. 状态初始化

AbstractStreamOperator.keyedStatedBackend()方法定义了创建和初始化KeyedStatedBackend的逻辑,具体如下。

java 复制代码
protected <K> AbstractKeyedStateBackend<K> keyedStateBackend(
   TypeSerializer<K> keySerializer,
   String operatorIdentifierText,
   PrioritizedOperatorSubtaskState prioritizedOperatorSubtaskStates,
   CloseableRegistry backendCloseableRegistry,
   MetricGroup metricGroup) throws Exception {
   if (keySerializer == null) {
      return null;
   }
   String logDescription = "keyed state backend for " + operatorIdentifierText;
   //1. 
   TaskInfo taskInfo = environment.getTaskInfo();
   final KeyGroupRange keyGroupRange = 
       KeyGroupRangeAssignment.computeKeyGroupRangeForOperatorIndex(
      taskInfo.getMaxNumberOfParallelSubtasks(),
      taskInfo.getNumberOfParallelSubtasks(),
      taskInfo.getIndexOfThisSubtask());
   // 确保恢复状态过程中构建的数据流被关闭
   CloseableRegistry cancelStreamRegistryForRestore = new CloseableRegistry();
   backendCloseableRegistry.registerCloseable(cancelStreamRegistryForRestore);
   // 创建BackendRestorerProcedure
   BackendRestorerProcedure<AbstractKeyedStateBackend<K>, KeyedStateHandle> 
      backendRestorer =
      new BackendRestorerProcedure<>(
         (stateHandles) -> stateBackend.createKeyedStateBackend(
            environment,
            environment.getJobID(),
            operatorIdentifierText,
            keySerializer,
            taskInfo.getMaxNumberOfParallelSubtasks(),
            keyGroupRange,
            environment.getTaskKvStateRegistry(),
            TtlTimeProvider.DEFAULT,
            metricGroup,
            stateHandles,
            cancelStreamRegistryForRestore),
         backendCloseableRegistry,
         logDescription);
   try {
      return backendRestorer.createAndRestore(
         prioritizedOperatorSubtaskStates.getPrioritizedManagedKeyedState());
   } finally {
      if (backendCloseableRegistry.unregisterCloseable(cancelStreamRegistryFor
         Restore)) {
         IOUtils.closeQuietly(cancelStreamRegistryForRestore);
      }
   }
}
  1. 获取当前Task的TaskInfo,并基于TaskInfo的参数创建KeyGroupRange,表示当前Task实例中存储的Key分组区间
  2. 创建CloseableRegistry并注册到backendCloseableRegistry中,用于确保在任务取消的情况下关闭在恢复状态过程中构造的数据流。
  3. 创建BackendRestorerProcedure,提供了stateBackend.createKeyedStateBackend()方法,也包含恢复历史状态数据的方法。
  4. 创建KeyedStateBackend,同时对状态数据进行恢复。prioritizedOperatorSubtaskStates是从TaskStateManager中根据OperatorID获取的算子历史状态,通过prioritizedOperatorSubtaskStates获取当前算子的PrioritizedManagedKeyedState,并基于这些状态数据恢复算子的状态。

1.2. 创建状态

接下来我们看MemoryStateBackend.createKeyedStateBackend()方法的具体实现。

java 复制代码
public <K> AbstractKeyedStateBackend<K> createKeyedStateBackend(
   Environment env,
   JobID jobID,
   String operatorIdentifier,
   TypeSerializer<K> keySerializer,
   int numberOfKeyGroups,
   KeyGroupRange keyGroupRange,
   TaskKvStateRegistry kvStateRegistry,
   TtlTimeProvider ttlTimeProvider,
   MetricGroup metricGroup,
   @Nonnull Collection<KeyedStateHandle> stateHandles,
   CloseableRegistry cancelStreamRegistry) throws BackendBuildingException {
   // 获取TaskStateManager实例
   TaskStateManager taskStateManager = env.getTaskStateManager();
   // 创建HeapPriorityQueueSetFactory实例
   HeapPriorityQueueSetFactory priorityQueueSetFactory =
      new HeapPriorityQueueSetFactory(keyGroupRange, numberOfKeyGroups, 128);
   // 创建HeapKeyedStateBackendBuilder实例HeapKeyedStateBackend
   return new HeapKeyedStateBackendBuilder<>(
      kvStateRegistry,
      keySerializer,
      env.getUserClassLoader(),
      numberOfKeyGroups,
      keyGroupRange,
      env.getExecutionConfig(),
      ttlTimeProvider,
      stateHandles,
      AbstractStateBackend.getCompressionDecorator(env.getExecutionConfig()),
      taskStateManager.createLocalRecoveryConfig(),
      priorityQueueSetFactory,
      isUsingAsynchronousSnapshots(),
      cancelStreamRegistry).build();
}
  1. 从environment参数中获取TaskStateManager实例
  2. 创建HeapPriorityQueueSetFactory实例,用于生成HeapPriorityQueueSet优先级队列,存储TimerHeapInternalTimer等数据。
  3. 调用HeapKeyedStateBackendBuilder.build()方法创建HeapKeyedStateBackend。

2. 基于MemoryStateBackend创建OperatorStateBackend

和创建KeyedStateBackend的过程相似,AbstractStreamOperator.operatorStateBackend()方法实现了创建OperatorStateBackend的方法。

java 复制代码
protected OperatorStateBackend operatorStateBackend(
   String operatorIdentifierText,
   PrioritizedOperatorSubtaskState prioritizedOperatorSubtaskStates,
   CloseableRegistry backendCloseableRegistry) throws Exception {
   String logDescription = "operator state backend for " + operatorIdentifierText;
   CloseableRegistry cancelStreamRegistryForRestore = new CloseableRegistry();
   backendCloseableRegistry.registerCloseable(cancelStreamRegistryForRestore);
   BackendRestorerProcedure<OperatorStateBackend, OperatorStateHandle> 
      backendRestorer =
      new BackendRestorerProcedure<>(
         (stateHandles) -> stateBackend.createOperatorStateBackend(
            environment,
            operatorIdentifierText,
            stateHandles,
            cancelStreamRegistryForRestore),
         backendCloseableRegistry,
         logDescription);
   try {
      return backendRestorer.createAndRestore(
         prioritizedOperatorSubtaskStates.getPrioritizedManagedOperatorState());
   } finally {
      if (backendCloseableRegistry.unregisterCloseable(cancelStreamRegistryFor
         Restore)) {
         IOUtils.closeQuietly(cancelStreamRegistryForRestore);
      }
   }
}
  1. 创建CloseableRegisty,确保在任务取消的情况下能够关闭在恢复状态时构造的数据流。
  2. 创建BackendRestorerProcedure,封装了stateBackend.createOperatorStateBackend()方法,并包含恢复历史状态数据的操作。
  3. 创建OperatorStateBackend,并恢复状态数据。

其中prioritizedOperatorSubtaskStates是从TaskStateManager中根据OperatorID获取的算子专有历史状态,可以通过prioritizedOperatorSubtaskStates获取当前算子中的PrioritizedManagedOperatorState,并基于这些状态数据恢复OperatorStateBackend中算子的状态。

3.基于MemoryStateBackend创建CheckpointStorage

在createCheckpointStorage()方法中,直接创建MemoryBackendCheckpointStorage实例并返回,没有涉及太多的流程

java 复制代码
public CheckpointStorage createCheckpointStorage(JobID jobId) throws IOException {
   return new MemoryBackendCheckpointStorage(jobId, getCheckpointPath(), 
      getSavepointPath(), maxStateSize);
}

参考:《Flink设计与实现:核心原理与源码解析》--张利兵

相关推荐
岁岁种桃花儿1 分钟前
CentOS7 彻底卸载所有JDK/JRE + 重新安装JDK8(实操完整版,解决kafka/jps报错)
java·开发语言·kafka
xcLeigh2 分钟前
Python 项目实战:用 Flask 实现 MySQL 数据库增删改查 API
数据库·python·mysql·flask·教程·python3
威迪斯特2 分钟前
Flask:轻量级Web框架的技术本质与工程实践
前端·数据库·后端·python·flask·开发框架·核心架构
xu_yule4 分钟前
Redis存储(15)Redis的应用_分布式锁_Lua脚本/Redlock算法
数据库·redis·分布式
一灰灰blog21 分钟前
Spring AI中的多轮对话艺术:让大模型主动提问获取明确需求
数据库·人工智能·spring
Hello.Reader27 分钟前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm
roman_日积跬步-终至千里37 分钟前
【Java并发】Java 线程池实战:警惕使用CompletableFuture.supplyAsync
java·开发语言·网络
毕设源码-钟学长40 分钟前
【开题答辩全过程】以 基于Springboot的扶贫众筹平台为例,包含答辩的问题和答案
java·spring boot·后端
Nandeska1 小时前
15、基于MySQL的组复制
数据库·mysql
CodeSheep程序羊1 小时前
拼多多春节加班工资曝光,没几个敢给这个数的。
java·c语言·开发语言·c++·python·程序人生·职场和发展