图形学:Transform矩阵(3维 2维) 平移,旋转,缩放

0. 简介

在图形学领域中,Transform矩阵(变换矩阵)是一种表示图形对象在二维或三维空间中的位置、方向和大小变化的数学工具。它们用于执行各种图形变换,如平移、旋转、缩放。Transform矩阵通常表示为一个二维或三维矩阵,具体形式取决于空间的维度。

0.1 二维变换矩阵

  • 在二维图形学中,通常使用3x3的矩阵表示变换,其中最后一行通常是[0, 0, 1],因为二维变换不影响z轴。这个矩阵可以表示平移、旋转、缩放和剪切。
  • 例如,一个简单的二维平移矩阵可以写成:
css 复制代码
   [ 1  0  tx ]
   [ 0  1  ty ]
   [ 0  0  1  ]

其中txty是平移的水平和垂直距离。

0.2 三维变换矩阵

  • 在三维图形学中,通常使用4x4的矩阵表示变换,其中最后一列通常是[0, 0, 0, 1]。这种矩阵可以表示平移、旋转、缩放以及更复杂的变换。
  • 一个简单的三维平移矩阵可以写成:
css 复制代码
   [ 1  0  0  tx ]
   [ 0  1  0  ty ]
   [ 0  0  1  tz ]
   [ 0  0  0  1  ]

其中txtytz是平移的xyz轴距离。

不管是二维变换矩阵还是三维变换矩阵,它的最后一行都是齐次坐标,通常是[0, ... , 1]用于处理齐次坐标,使得可以用矩阵乘法来同时处理旋转和平移。

1. 举个例子

1.1 平移

给定的初始 Transform 矩阵如下:

css 复制代码
[ 1  0  0  tx ]
[ 0  1  0  ty ]
[ 0  0  1  tz ]
[ 0  0  0  1  ]

希望在 x 轴增加 2 个单位,y 轴增加 1 个单位,z 轴减小 3 个单位。

1.1.1 计算过程

  1. 对 x 轴进行增加 2 个单位: 可以将 tx(原始平移量)增加 2 个单位。
  2. 对 y 轴进行增加 1 个单位: 将 ty(原始平移量)增加 1 个单位。
  3. 对 z 轴进行减小 3 个单位: 要使物体沿 z 轴负方向移动,需要将 tz 减小 3 个单位。

1.1.2 计算结果

css 复制代码
[ 1  0  0  tx + 2 ]
[ 0  1  0  ty + 1 ]
[ 0  0  1  tz - 3 ]
[ 0  0  0     1   ]

这个新的矩阵表示了对原始物体进行了所需的平移操作。

1.2 旋转

1.2.1 2维旋转矩阵

css 复制代码
```css
[ cos(θ)   -sin(θ) ]
[ sin(θ)    cos(θ) ]

1.2.1 3维旋转矩阵

  • 绕x轴旋转矩阵
css 复制代码
[ 1     0        0      0 ]
[ 0  cos(θ)   -sin(θ)   0 ]
[ 0  sin(θ)    cos(θ)   0 ]
[ 0     0        0      1 ]
  • z轴旋转
css 复制代码
[ cos(θ)  -sin(θ)   0   0 ]
[ sin(θ)   cos(θ)   0   0 ]
[    0       0      1   0 ]
[    0       0      0   1 ]
  • 绕y轴旋转
css 复制代码
[ cos(θ)   0   sin(θ)   0 ]
[    0     1      0     0 ]
[-sin(θ)   0   cos(θ)   0 ]
[    0     0      0     1 ]

原始的Transform矩阵T与旋转矩阵R相乘,得到新的Transform矩阵 T'
T' = T * R

1.3 缩放

1.3.1 缩放矩阵

css 复制代码
[ sx  0   0   0 ]
[ 0   sy  0   0 ]
[ 0   0   sz  0 ]
[ 0   0   0   1 ]

原始的Transform矩阵T与缩放矩阵S相乘,得到新的Transform矩阵 T'
T' = T * S

相关推荐
闻缺陷则喜何志丹14 小时前
【计算几何】仿射变换与齐次矩阵
c++·数学·算法·矩阵·计算几何
闻缺陷则喜何志丹21 小时前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
iAkuya1 天前
(leetcode)力扣100 18矩阵置零(哈希)
leetcode·矩阵·哈希算法
点云侠1 天前
粒子群优化算法求解三维变换矩阵的数学推导
线性代数·算法·矩阵
c#上位机1 天前
halcon计算仿射变换矩阵的逆矩阵
计算机视觉·矩阵·c#
AI科技星2 天前
圆柱螺旋运动方程的一步步求导与实验数据验证
开发语言·数据结构·经验分享·线性代数·算法·数学建模
劈星斩月2 天前
线性代数-3Blue1Brown《线性代数的本质》逆矩阵、列空间、秩与零空间(8)
线性代数·逆矩阵·列空间·秩与零空间
拾贰_C2 天前
【Linear Mathematics | 线性代数 | Matrix Theory |矩阵论】RREF的Pivot(主元)是什么?怎么找主元?
线性代数·矩阵
拼命鼠鼠3 天前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划
式5163 天前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习