【大数据面试题】002 Flink 如何实现 Exactly-Once 语义

一步一个脚印,一天一道大数据面试题。

在流式大数据处理框架中,Exactly-Once 语义对于确保每条数据精确地只被消费一次(避免重复读取和丢失读取)非常重要。下面将介绍 Flink 是如何实现 Exactly-Once 语义的。

尽管在程序正常运行、资源充足的情况下实现 Exactly-Once 语义并不难,但实际生产环境中存在各种复杂情况和突发状况,因此为了可靠地实现 Exactly-Once,需要以下容错机制。

数据源(Source)

首先,数据源需要记录"偏移量",即标记已读取的位置。这样,如果程序重启,可以准确地从未被消费的第一条数据开始读取,既不会多读也不会少读。

Flink 检查点(Checkpoint)

Flink 提供了检查点机制,能够在出现错误时准确恢复数据和操作符状态等。只有通过精确的容错恢复机制,才能实现可靠的 Exactly-Once 语义。

Flink 的检查点机制基于分布式快照技术,定期将作业的状态保存到持久存储中,例如分布式文件系统或远程数据库。当发生故障时,Flink 可以使用最近的检查点进行恢复,确保处理过程的准确性。

数据消费端(Sink)

最后,在数据消费端,需要确保消费者能够支持"事务性"提交,比如使用支持事务的数据库(如 MySQL)进行数据写入。这样,在发生故障时,Flink 可以回滚未完成的事务,并重新执行已提交的事务,从而保证数据的一致性和准确性。

如果无法使用事务性提交,另一种方式是通过幂等性操作来实现 Exactly-Once 语义。例如,可以多次将同一条数据放入一个 Set 集合中,依然保持与第一次放入集合时相同的结果。

相关推荐
大刘讲IT7 分钟前
数据治理体系的“三驾马车”:质量、安全与价值挖掘
大数据·运维·经验分享·学习·安全·制造·零售
悻运1 小时前
Spark论述及其作用
大数据·分布式·spark
szxinmai主板定制专家1 小时前
国产RK3568+FPGA以 ‌“实时控制+高精度采集+灵活扩展”‌ 为核心的解决方案
大数据·运维·网络·人工智能·fpga开发·机器人
细心的莽夫3 小时前
Elasticsearch复习笔记
java·大数据·spring boot·笔记·后端·elasticsearch·docker
痕5173 小时前
spark和Hadoop之间的对比和联系
大数据·hadoop·spark
CXH7284 小时前
hadoop分布式部署
大数据·hadoop·分布式
码农周4 小时前
Elasticsearch 报错 Limit of total fields [1000] has been exceeded
大数据·elasticsearch
晴天彩虹雨5 小时前
实时数仓体系概览与架构演进
数据仓库·clickhouse·架构·flink·kafka
1momomo汉堡包5 小时前
spark和hadoop之间的对比和联系
大数据·hadoop·spark
Elastic 中国社区官方博客6 小时前
Elasticsearch 堆内存使用情况和 JVM 垃圾回收
大数据·jvm·数据库·elasticsearch·搜索引擎·全文检索