ChatPromptTemplate和AI Message的用法

ChatPromptTemplate的用法

用法1:

python 复制代码
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain

prompt= ChatPromptTemplate.from_template("tell me the weather of {topic}")
str = prompt.format(topic="shenzhen")
print(str)

打印出:

bash 复制代码
Human: tell me the weather of shenzhen

最终和llm一起使用:

python 复制代码
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain


prompt = ChatPromptTemplate.from_template("who is {name}")
# str = prompt.format(name="Bill Gates")
# print(str)
llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
chain05 = prompt| llm | output_parser
print(chain05.invoke({"name": "Bill Gates"}))

用法2:

python 复制代码
import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful AI bot. Your name is {name}."),
                ("human", "Hello, how are you doing?"),
                ("ai", "I'm doing well, thanks!"),
                ("human", "{user_input}"),
            ])

llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
chain05 = prompt| llm | output_parser
print(chain05.invoke({"name": "Bob","user_input": "What is your name"}))

也可以这样:

python 复制代码
import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

llm = ChatGLM.ChatGLM_LLM()

prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful AI bot. Your name is {name}."),
                ("human", "Hello, how are you doing?"),
                ("ai", "I'm doing well, thanks!"),
                ("human", "{user_input}"),
            ])


# a = prompt.format_prompt({name="Bob"})

a = prompt.format_prompt(name="Bob",user_input="What is your name") 
print(a)
print(llm.invoke(a))

参考: https://python.langchain.com/docs/modules/model_io/prompts/quick_start

https://python.langchain.com/docs/modules/model_io/prompts/composition

相关推荐
ThetaarSofVenice1 分钟前
带着国标充电器出国怎么办? 适配器模式(Adapter Pattern)
java·适配器模式
酷讯网络_2408701606 分钟前
【全开源】Java多语言tiktok跨境商城TikTok内嵌商城送搭建教程
java·开发语言·开源
在路上走着走着14 分钟前
openEuler安装OpenGauss5.0
数据库·gaussdb
上海运维Q先生35 分钟前
面试题整理17----K8s中request和limit资源限制是如何实现的
服务器·云原生·kubernetes
余~~1853816280037 分钟前
矩阵碰一碰发视频源码技术解析,支持OEM
数据库·microsoft
蓝天星空1 小时前
spring cloud gateway 3
java·spring cloud
罗政1 小时前
PDF书籍《手写调用链监控APM系统-Java版》第9章 插件与链路的结合:Mysql插件实现
java·mysql·pdf
一根稻草君1 小时前
利用poi写一个工具类导出逐级合并的单元格的Excel(通用)
java·excel
kirito学长-Java1 小时前
springboot/ssm网上宠物店系统Java代码编写web宠物用品商城项目
java·spring boot·后端
张声录11 小时前
【ETCD】【实操篇(十五)】etcd集群成员管理:如何高效地添加、删除与更新节点
数据库·etcd