ChatPromptTemplate和AI Message的用法

ChatPromptTemplate的用法

用法1:

python 复制代码
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain

prompt= ChatPromptTemplate.from_template("tell me the weather of {topic}")
str = prompt.format(topic="shenzhen")
print(str)

打印出:

bash 复制代码
Human: tell me the weather of shenzhen

最终和llm一起使用:

python 复制代码
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain


prompt = ChatPromptTemplate.from_template("who is {name}")
# str = prompt.format(name="Bill Gates")
# print(str)
llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
chain05 = prompt| llm | output_parser
print(chain05.invoke({"name": "Bill Gates"}))

用法2:

python 复制代码
import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful AI bot. Your name is {name}."),
                ("human", "Hello, how are you doing?"),
                ("ai", "I'm doing well, thanks!"),
                ("human", "{user_input}"),
            ])

llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
chain05 = prompt| llm | output_parser
print(chain05.invoke({"name": "Bob","user_input": "What is your name"}))

也可以这样:

python 复制代码
import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

llm = ChatGLM.ChatGLM_LLM()

prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful AI bot. Your name is {name}."),
                ("human", "Hello, how are you doing?"),
                ("ai", "I'm doing well, thanks!"),
                ("human", "{user_input}"),
            ])


# a = prompt.format_prompt({name="Bob"})

a = prompt.format_prompt(name="Bob",user_input="What is your name") 
print(a)
print(llm.invoke(a))

参考: https://python.langchain.com/docs/modules/model_io/prompts/quick_start

https://python.langchain.com/docs/modules/model_io/prompts/composition

相关推荐
gjc59212 分钟前
MySQL隐蔽 BUG:组合条件查询无故返回空集?深度排查与规避方案
android·数据库·mysql·bug
这是程序猿14 分钟前
基于java的ssm框架学生作业管理系统
java·开发语言·spring boot·spring·学生作业管理系统
千百元15 分钟前
限制网段访问服务器端口63790
java·网络·mybatis
宋情写19 分钟前
JavaAI03-数据来源
java
❀͜͡傀儡师21 分钟前
docker部署PostgreSQL数据库的监控和管理工具
数据库·docker·postgresql
Amy_au21 分钟前
Linux week 01
linux·运维·服务器
钦拆大仁25 分钟前
JDK17新特性
java
小程故事多_8031 分钟前
Spring AI 赋能 Java,Spring Boot 快速落地 LLM 的企业级解决方案
java·人工智能·spring·架构·aigc
淮上安子骞34 分钟前
sage10.8源码部署
服务器·密码学·ctf·本地部署·sage
KingRumn38 分钟前
DBUS源码剖析之DBusMessage数据结构
linux·服务器·数据结构