用Python动态展示排序算法

文章目录

经常看到这种算法可视化的图片,但往往做不到和画图的人心灵相通,所以想自己画一下,本文主要实现归并排序和希尔排序,如果想实现其他算法可参考这篇

C语言实现各种排序算法[选择,冒泡,插入,归并,希尔,快排,堆排序,计数]

选择冒泡

这两种排序方案简单到很难说是什么算法,其中选择排序通过遍历一次数组,选出其中最大(小)的值放在新数组的第一位,再从剩下的数里选出最大(小)的,放到第二位,依次类推;冒泡排序则是通过重复走访要排序的数组,比较相邻元素,如果顺序不符合要求则交换位置,直到不需要交换为止。

选择排序 冒泡排序

二者的核心代码分别为:

python 复制代码
#x为待排序列表,N=len(x)
#选择排序
for i in range(N):
    iMax = i
    for j in range(i, N):
        if(x[j]>x[iMax]):
            iMax = j
    x[iMax],x[i] = x[i],x[iMax]

#冒泡排序
tempN = N-1
for i in range(tempN):
    for j in range(0, tempN-i):
        if(x[j]>x[j+1]):
            x[j],x[j+1] = x[j+1],x[j]

下面给出选择排序的绘图代码,其他的所有排序算法,其实只需改变核心部分。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation 

start,end,N = 10,100,9
x = np.random.randint(start, end, size=N)
Index = np.arange(N)
xs = []
nowIndex = []

for i in range(N):
    iMax = i
    for j in range(i, N):
        xs.append(x*1)      #存储当前顺序,用于绘图
        nowIndex.append([i,j,iMax]) #存储当前的i,j,max位置,用于绘图
        if(x[j]>x[iMax]):
            iMax = j
            xs.append(x*1)
            nowIndex.append([i,j,iMax])
    x[iMax],x[i] = x[i],x[iMax]

fig, ax = plt.subplots()
colors = np.repeat('g',N)
colors[0] = 'b'
bar = ax.bar(Index,x,color=colors)

def animate(n):
    data = xs[n]
    colors = np.repeat('gray',N)
    colors[nowIndex[n]] = 'b','g','r'
    ax.clear()
    bar = ax.bar(Index, data, color=colors)
    return bar

ani = animation.FuncAnimation(fig, animate, 
    range(len(xs)), interval=500, repeat=False, blit=True)
plt.show()
ani.save("sort.gif")

插入排序

插入排序的基本思路是将数组分为前后两个部分,前面有序,后面无序。逐个扫描无序数组,将每次扫描的数插入到有序数组中,从而有序数组越来越长,无序数组越来越短,直到整个数组都是有序的。

核心代码为

python 复制代码
for i in range(1,N):
    j = i-1
    temp = x[i]
    while(x[i]<x[j] and j>=0):
        x[j+1] = x[j]
        j -= 1
    x[j+1] = temp

由于在这段代码中, x i x_i xi被取出放在旁边,所以其动态图中大部分时间会缺失一个值,在图中将其置于最右侧,其动态过程如图所示,蓝色表示抽出来准备插进去的那根bar

归并排序

排序算法到这里才算有点意思,归并排序是算法导论中介绍分治概念时提到的,基本思路是将数组拆分成子数组,然后令子数组有序,再令数组之间有序,从而整个数组有序。

算法步骤 \textbf{算法步骤} 算法步骤

设数组有 n n n个元素, { a 0 , a 1 , ... , a n } \{a_0,a_1,\ldots,a_n\} {a0,a1,...,an}

  1. 如果数组元素大于2,则将数组分成左数组和右数组,如果数组等于2,则将数组转成有序数组
  2. 对左数组和右数组执行1操作。
  3. 合并左数组和右数组。

可以发现,对长度为 n n n的数组,需要 log ⁡ 2 n \log_2n log2n次的拆分,每个拆分层级都有 O ( n ) O(n) O(n)的时间复杂度和 O ( n ) O(n) O(n)的空间复杂度,所以其时间复杂度和空间复杂度分别为 O ( n log ⁡ 2 n ) 和 O ( n ) O(n\log_2n)和O(n) O(nlog2n)和O(n)。

其核心算法为

python 复制代码
def Merge(X, Y):
    nL,nR = len(X), len(Y)
    iterL,iterR = 0,0
    xNew = []
    for _ in range(nL+nR):
        if(iterL==nL): return xNew + Y[iterR:]
        if(iterR==nR): return xNew + X[iterL:]
        if(X[iterL]<Y[iterR]):
            xNew.append(X[iterL])
            iterL += 1
        else:
            xNew.append(Y[iterR])
            iterR += 1
    return xNew

def MergeSort(x):
    if len(x)==1:
        return x
    if len(x)==2:
        return x if x[0]<x[1] else [x[1],x[0]]
    nL = len(x)//2
    return Merge(MergeSort(x[:nL]),
                 MergeSort(x[nL:]))

当然这么写效率是非常低的,如果像高效还是得用指针,但我都已经用Python了,所以就不去想效率的问题,问题的关键是这种带有返回值的递归程序根本没法画图啊。。。所以还是改成指针的写法

python 复制代码
def Merge(X, nL):
    nR = len(X)-nL
    XL,XR = X[:nL]*1,X[nL:]*1
    iterL,iterR = 0,0
    for i in range(nL+nR):
        if(iterL==nL): break
        if(iterR==nR): 
            X[i:] = XL[iterL:]
            return
        if(XL[iterL]<XR[iterR]):
            X[i] = XL[iterL]
            iterL += 1
        else:
            X[i] = XR[iterR]
            iterR += 1

def MergeSort(X):
    if len(X)<2:
        return
    nL = len(X)//2
    MergeSort(X[:nL])
    MergeSort(X[nL:])
    Merge(X,nL)

这个图。。怎么说呢,因为在【Merge】过程中,有很多bar被掩盖掉了,所以可能只有画图的人能看懂吧。。。

希尔排序

据说是第一个突破 O ( n 2 ) O(n^2) O(n2)的排序算法,又称为缩小增量排序,本质上也是一种分治方案。

在归并排序中,先将长度为n的数组划分为nL和nR两部分,然后继续划分,直到每个数组的长度不大于2,再对每个不大于2的数组进行排序。这样,每个子数组内部有序而整体无序,然后将有序的数组进行回溯重组,直到重新变成长度为n的数组为止。

希尔排序反其道而行之,在将数组划分为nL和nR后,对nL和nR进行按位排序,使得nL和nR内部无序,但整体有序。然后再将数组进行细分,当数组长度变成1的时候,内部也就谈不上无序了,而所有长度为1的数组整体有序,也就是说有这些子数组所组成的数组是有序的。

算法步骤 \textbf{算法步骤} 算法步骤

设数组有 n n n个元素, { a 0 , a 1 , ... , a n } \{a_0,a_1,\ldots,a_n\} {a0,a1,...,an}

  1. 如果数组元素大于2,则将数组分成左数组和右数组,并对左数组和右数组的元素进行一对一地排序。
  2. 对每一个数组进行细分,然后将每个子数组进行一对一排序。
python 复制代码
def ShellSort(arr):
    n = len(arr)
    nSub = n//2
    while nSub>0:
        for i in range(nSub,n):
            temp = arr[i]
            j = i-nSub
            while j>=0 and temp<arr[j]:
                arr[j+nSub] = arr[j]
                j -= nSub
            arr[j+nSub] = temp
        nSub //= 2
相关推荐
z5418387 分钟前
装饰器---python
开发语言·python
时光の尘9 分钟前
C语言菜鸟入门·关键字·void的用法
c语言·开发语言·c++·算法·c#·c·关键字
蚂蚁没问题s10 分钟前
图像处理 - 色彩空间转换
图像处理·人工智能·算法·机器学习·计算机视觉
Eric.Lee202112 分钟前
图像上显示中文文本 - python 实现
开发语言·python
慕卿扬17 分钟前
基于python的机器学习(三)—— 关联规则与推荐算法
python·学习·机器学习·推荐算法
戊子仲秋22 分钟前
【LeetCode】每日一题 2024_11_21 矩阵中的蛇(模拟)
算法·leetcode·矩阵
HP-Patience25 分钟前
【机器学习】- 模型复杂度vs模型误差
python·算法·机器学习
努力中的小胖纸30 分钟前
python --基础阶段--文件操作(5)
开发语言·python
lisacumt32 分钟前
【spark】pycharm 内使用pyspark连接有kerberos集群执行sql
python·pycharm·spark
螺旋天光极锐斩空闪壹式!34 分钟前
第十三课 二维数组(2)方向数组
开发语言·c++·算法