ClickHouse的优缺点和应用场景

当业务场景需要一个大批量、快速的、可支持聚合运算的数据库,那么可选择ClickHouse。

选择ClickHouse 的原因:

  1. 记录类型类似于LOG,读取、运算远远大于写入操作
  2. 选取有限列,对近千万条数据,快算的运算出结果。
  3. 数据批量从ODPS表中同步,数据一致性容忍度高
  4. 支持复杂数据结构,例如Array,方便查询
  5. 数据成本越少越好

简单的Mysql、ClickHouse 性能对比:

ClickHouse的优点

1、只需要读取要计算的列数据,而非行式的整行数据读取,降低 IO cost。

2、同列同类型,有十倍压缩提升,进一步降低 IO。

3、Clickhouse 根据不同存储场景,做个性化搜索算法。

ClickHouse 的缺点

  • 不支持事物
  • 不支持Update/Delete操作
  • 支持有限操作系统(不支持win,PS:并不是大问题)

ClickHouse特点

  1. 真正的面向列的DBMS
  2. 数据高效压缩
  3. 磁盘存储的数据
  4. 多核并行处理
  5. 在多个服务器上分布式处理
  6. 支持SQL语法
  7. 向量化引擎
  8. 实时数据更新
  9. 支持索引
  10. 支持近似预估计算
  11. 支持嵌套的数据结构
  12. 支持数组作为数据类型
  13. 支持限制查询复杂性以及配额
  14. 复制数据复制和对数据完整性的支持
相关推荐
Ahern_18 分钟前
Oracle 普通表至分区表的分区交换
大数据·数据库·sql·oracle
李昊哲小课42 分钟前
deepin 安装 kafka
大数据·分布式·zookeeper·数据分析·kafka
FIN66681 小时前
张剑教授:乳腺癌小红书(2025年版)更新,芦康沙妥珠单抗成功进入TNBC二线推荐,彰显乳腺癌诊疗的“中国力量”
大数据·搜索引擎·健康医疗
core5125 小时前
flink sink doris
大数据·mysql·flink·doris·存储·sink·过程正常
出发行进7 小时前
Hive其四,Hive的数据导出,案例展示,表类型介绍
数据仓库·hive·hadoop
武子康8 小时前
大数据-258 离线数仓 - Griffin架构 配置安装 Livy 架构设计 解压配置 Hadoop Hive
java·大数据·数据仓库·hive·hadoop·架构
lucky_syq10 小时前
Flume和Kafka的区别?
大数据·kafka·flume
AI_NEW_COME10 小时前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
it噩梦10 小时前
es 中 terms set 使用
大数据·elasticsearch
中科岩创11 小时前
中科岩创边坡自动化监测解决方案
大数据·网络·物联网