ClickHouse的优缺点和应用场景

当业务场景需要一个大批量、快速的、可支持聚合运算的数据库,那么可选择ClickHouse。

选择ClickHouse 的原因:

  1. 记录类型类似于LOG,读取、运算远远大于写入操作
  2. 选取有限列,对近千万条数据,快算的运算出结果。
  3. 数据批量从ODPS表中同步,数据一致性容忍度高
  4. 支持复杂数据结构,例如Array,方便查询
  5. 数据成本越少越好

简单的Mysql、ClickHouse 性能对比:

ClickHouse的优点

1、只需要读取要计算的列数据,而非行式的整行数据读取,降低 IO cost。

2、同列同类型,有十倍压缩提升,进一步降低 IO。

3、Clickhouse 根据不同存储场景,做个性化搜索算法。

ClickHouse 的缺点

  • 不支持事物
  • 不支持Update/Delete操作
  • 支持有限操作系统(不支持win,PS:并不是大问题)

ClickHouse特点

  1. 真正的面向列的DBMS
  2. 数据高效压缩
  3. 磁盘存储的数据
  4. 多核并行处理
  5. 在多个服务器上分布式处理
  6. 支持SQL语法
  7. 向量化引擎
  8. 实时数据更新
  9. 支持索引
  10. 支持近似预估计算
  11. 支持嵌套的数据结构
  12. 支持数组作为数据类型
  13. 支持限制查询复杂性以及配额
  14. 复制数据复制和对数据完整性的支持
相关推荐
过尽漉雪千山5 小时前
Flink1.17.0集群的搭建
java·大数据·linux·flink·centos
金融小师妹6 小时前
多因子AI回归揭示通胀-就业背离,黄金价格稳态区间的时序建模
大数据·人工智能·算法
孟意昶7 小时前
Spark专题-第一部分:Spark 核心概述(1)-Spark 是什么?
大数据·分布式·spark
小花鱼202519 小时前
Elasticsearch (ES)相关
大数据·elasticsearch
TDengine (老段)19 小时前
TDengine 选择函数 TOP() 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
Dobby_0520 小时前
【Hadoop】分布式文件系统 HDFS
大数据·hadoop·分布式
哈哈很哈哈20 小时前
Spark 核心 RDD详解
大数据·分布式·spark·scala
智海观潮20 小时前
Spark广播变量HttpBroadcast和TorrentBroadcast对比
大数据·spark
项目題供诗20 小时前
Hadoop(十一)
大数据·hadoop·分布式
青云交21 小时前
Java 大视界 -- Java 大数据在智能家居场景联动与用户行为模式挖掘中的应用
java·大数据·智能家居·边缘计算·户型适配·行为挖掘·场景联动