【大厂AI课学习笔记】【1.6 人工智能基础知识】(4)深度学习和机器学习

关于深度学习和机器学习,出来包含关系之外,还有如上总结的知识点。

分别从特征处理、学习方法、数据依赖、硬件依赖等4个方面,进行了总结。

从特征处理上看:深度学习从数据中习得高级特征,并自行创建新的特征。这比普通的机器学习,更少的人工特征训练的参与,机器更加自主的学习。人既是加快了机器学习的性能,但同时也是束缚,要想解决更多的问题,获得更高级的智能,目前这是较好的出路。

从学习方法上看:深度学习通过端到端的解决问题,来完成学习过程。有额就是只管输入和输出这两端,不需要将学习过程分为较小的步骤,然后再去合并输出。

从数据依赖上看:深度学习需要使用大量的数据,由于是自发的学习,很多时候可解释性并不好。而普通的机器学习,由于监督学习等的方法存在,很多数据是带着任务出发,特征维度和标签一起给的,因此可解释性非常好。

从硬件依赖上看:深度学习需要大量的算力,GPU的出现,让深度学习更加的如虎添翼。普通的机器学习,可能较小的算力就能实现。

上图中,特别明显的表达了,深度学习,利用神经网络模型作为算法,且只关心端到端的输入和输出。

更多背景知识:

相同点:

  1. 都是基于数据的算法:机器学习和深度学习都是从数据中学习规律或模式的算法。它们通过分析输入数据,提取有用的特征,并基于这些特征进行预测或决策。

  2. 都需要训练和优化:无论是机器学习还是深度学习,都需要通过训练来优化模型的参数,以提高模型的预测或决策能力。训练过程中,算法会不断地调整参数,以最小化预测误差或最大化性能指标。

  3. 都可应用于多种任务:机器学习和深度学习都可以应用于多种任务,如分类、回归、聚类、降维、生成等。这些任务在各个领域都有广泛的应用,如自然语言处理、图像识别、语音识别、推荐系统等。

不同点:

  1. 模型的复杂度不同:机器学习模型通常比较简单,如线性回归、决策树、支持向量机等。这些模型可以快速地训练和优化,但对于复杂的问题可能无法达到很高的准确率。而深度学习模型则非常复杂,通常由大量的神经元和层组成。这些模型需要更多的数据和计算资源来训练,但可以处理更复杂的问题,并达到更高的准确率。

  2. 特征工程的需求不同:在机器学习中,特征工程是非常重要的一步,需要手动提取和选择有用的特征。这需要领域知识和经验,并且非常耗时。而在深度学习中,特征提取是自动完成的,模型可以自动学习从原始数据中提取有用的特征。这使得深度学习在处理高维和复杂数据时更加有效。

  3. 可解释性的差异:机器学习模型通常比较直观,易于理解和解释。例如,决策树模型可以直观地展示决策过程。而深度学习模型则非常复杂,难以理解和解释。这使得深度学习在某些需要解释性的场景中(如医疗、金融等)的应用受到一定的限制。

  4. 对数据和计算资源的需求不同:由于深度学习模型的复杂性,它们通常需要更多的数据和计算资源来训练。这使得深度学习的应用受到了一定的限制,特别是在数据稀缺或计算资源有限的情况下。而机器学习模型则相对较轻量级,可以在较小的数据集上训练,并且对计算资源的需求较低。

总的来说,机器学习和深度学习在很多方面有相似之处,但也有很多不同之处。选择使用哪种方法取决于具体的应用场景、数据规模和计算资源等因素。在实际应用中,我们可以根据问题的复杂度和需求来选择合适的算法和模型。

相关推荐
那个村的李富贵3 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者5 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR5 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky6 小时前
大模型生成PPT的技术原理
人工智能
羊群智妍6 小时前
2026 AI搜索流量密码:免费GEO监测工具,优化效果看得见
笔记·百度·微信·facebook·新浪微博
禁默6 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切7 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
阿蒙Amon7 小时前
TypeScript学习-第10章:模块与命名空间
学习·ubuntu·typescript
AI绘画哇哒哒7 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站7 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能