烹饪第一个U-Net进行图像分割

今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:

代码:

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------

Kaggle的MRI分割数据集:

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------

主要步骤:

  1. 数据集的探索

  2. 数据集和Dataloader类的创建

  3. 架构的创建

  4. 检查损失(DICE和二元交叉熵)

  5. 结果

数据集的探索

我们得到了一组(255 x 255)的MRI扫描的2D图像,以及它们相应的必须将每个像素分类为0(健康)或1(肿瘤)。

这里有一些例子:

第一行:肿瘤,第二行:健康主题

数据集和Dataloader类

这是涉及神经网络的每个项目中都会找到的一步。

数据集类

ruby 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader


class BrainMriDataset(Dataset):
    def __init__(self, df, transforms):
        # df contains the paths to all files
        self.df = df
        # transforms is the set of data augmentation operations we use
        self.transforms = transforms
        
    def __len__(self):
        return len(self.df)
    
    def __getitem__(self, idx):
        image = cv2.imread(self.df.iloc[idx, 1])
        mask = cv2.imread(self.df.iloc[idx, 2], 0)
        
        augmented = self.transforms(image=image, 
                                    mask=mask)
 
        image = augmented['image'] # Dimension (3, 255, 255)
        mask = augmented['mask']   # Dimension (255, 255)


        # We notice that the image has one more dimension (3 color channels), so we have to one one "artificial" dimension to the mask to match it
        mask = np.expand_dims(mask, axis=0) # Dimension (1, 255, 255)
        
        return image, mask

数据加载器

既然我们已经创建了Dataset类来重新整形张量,我们首先需要定义训练集(用于训练模型),验证集(用于监控训练并避免过拟合),以及测试集,最终评估模型在未见数据上的性能。

makefile 复制代码
# Split df into train_df and val_df
train_df, val_df = train_test_split(df, stratify=df.diagnosis, test_size=0.1)
train_df = train_df.reset_index(drop=True)
val_df = val_df.reset_index(drop=True)


# Split train_df into train_df and test_df
train_df, test_df = train_test_split(train_df, stratify=train_df.diagnosis, test_size=0.15)
train_df = train_df.reset_index(drop=True)


train_dataset = BrainMriDataset(train_df, transforms=transforms)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)


val_dataset = BrainMriDataset(val_df, transforms=transforms)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)


test_dataset = BrainMriDataset(test_df, transforms=transforms)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)

U-Net架构

U-Net架构是用于图像分割任务的强大模型,是卷积神经网络(CNN)的一种类型,其名称来自其U形状的结构。U-Net最初由Olaf Ronneberger等人在2015年的论文中首次开发,标题为"U-Net:用于生物医学图像分割的卷积网络"。

其结构涉及编码(降采样)路径和解码(上采样)路径。U-Net至今仍然是一个非常成功的模型,其成功来自两个主要因素:

  1. 对称结构(U形状)

  2. 前向连接(图片上的灰色箭头)

前向连接的主要思想是,随着我们在层中越来越深入,我们会失去有关原始图像的一些信息。然而,我们的任务是对图像进行分割,我们需要精确的图像来对每个像素进行分类。这就是为什么我们在对称解码器层的每一层中重新注入图像的原因。以下是通过Pytorch实现的代码:

ruby 复制代码
train_dataset = BrainMriDataset(train_df, transforms=transforms)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)


val_dataset = BrainMriDataset(val_df, transforms=transforms)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)


test_dataset = BrainMriDataset(test_df, transforms=transforms)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)




class UNet(nn.Module):


    def __init__(self):
        super().__init__()


        # Define convolutional layers
        # These are used in the "down" path of the U-Net,
        # where the image is successively downsampled
        self.conv_down1 = double_conv(3, 64)
        self.conv_down2 = double_conv(64, 128)
        self.conv_down3 = double_conv(128, 256)
        self.conv_down4 = double_conv(256, 512)


        # Define max pooling layer for downsampling
        self.maxpool = nn.MaxPool2d(2)


        # Define upsampling layer
        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)


        # Define convolutional layers
        # These are used in the "up" path of the U-Net,
        # where the image is successively upsampled
        self.conv_up3 = double_conv(256 + 512, 256)
        self.conv_up2 = double_conv(128 + 256, 128)
        self.conv_up1 = double_conv(128 + 64, 64)


        # Define final convolution to output correct number of classes
        # 1 because there are only two classes (tumor or not tumor)
        self.last_conv = nn.Conv2d(64, 1, kernel_size=1)


    def forward(self, x):
        # Forward pass through the network


        # Down path
        conv1 = self.conv_down1(x)
        x = self.maxpool(conv1)
        conv2 = self.conv_down2(x)
        x = self.maxpool(conv2)
        conv3 = self.conv_down3(x)
        x = self.maxpool(conv3)
        x = self.conv_down4(x)


        # Up path
        x = self.upsample(x)
        x = torch.cat([x, conv3], dim=1)
        x = self.conv_up3(x)
        x = self.upsample(x)
        x = torch.cat([x, conv2], dim=1)
        x = self.conv_up2(x)
        x = self.upsample(x)
        x = torch.cat([x, conv1], dim=1)
        x = self.conv_up1(x)


        # Final output
        out = self.last_conv(x)
        out = torch.sigmoid(out)


        return out

损失和评估标准

与每个神经网络一样,都有一个目标函数,一种损失,我们通过梯度下降最小化它。我们还引入了评估标准,它帮助我们训练模型(如果它在连续的3个时期中没有改善,那么我们停止训练,因为模型正在过拟合)。从这一段中有两个主要要点:

  1. 损失函数是两个损失函数的组合(DICE损失,二元交叉熵)

  2. 评估函数是DICE分数,不要与DICE损失混淆

DICE损失:

DICE损失

备注:我们添加了一个平滑参数(epsilon)以避免除以零。

二元交叉熵损失:

BCE

于是,我们的总损失是:

让我们一起实现它:

properties 复制代码
def dice_coef_loss(inputs, target):
    smooth = 1.0
    intersection = 2.0 * ((target * inputs).sum()) + smooth
    union = target.sum() + inputs.sum() + smooth


    return 1 - (intersection / union)




def bce_dice_loss(inputs, target):
    inputs = inputs.float()
    target = target.float()
    
    dicescore = dice_coef_loss(inputs, target)
    bcescore = nn.BCELoss()
    bceloss = bcescore(inputs, target)


    return bceloss + dicescore

评估标准(Dice系数):

我们使用的评估函数是DICE分数。它在0到1之间,1是最好的。

Dice分数的图示

其数学实现如下:

python 复制代码
def dice_coef_metric(inputs, target):
    intersection = 2.0 * (target * inputs).sum()
    union = target.sum() + inputs.sum()
    if target.sum() == 0 and inputs.sum() == 0:
        return 1.0


    return intersection / union

训练循环

properties 复制代码
def train_model(model_name, model, train_loader, val_loader, train_loss, optimizer, lr_scheduler, num_epochs):  
    
    print(model_name)
    loss_history = []
    train_history = []
    val_history = []


    for epoch in range(num_epochs):
        model.train()  # Enter train mode
        
        # We store the training loss and dice scores
        losses = []
        train_iou = []
                
        if lr_scheduler:
            warmup_factor = 1.0 / 100
            warmup_iters = min(100, len(train_loader) - 1)
            lr_scheduler = warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor)
        
        # Add tqdm to the loop (to visualize progress)
        for i_step, (data, target) in enumerate(tqdm(train_loader, desc=f"Training epoch {epoch+1}/{num_epochs}")):
            data = data.to(device)
            target = target.to(device)
                      
            outputs = model(data)
            
            out_cut = np.copy(outputs.data.cpu().numpy())


            # If the score is less than a threshold (0.5), the prediction is 0, otherwise its 1
            out_cut[np.nonzero(out_cut < 0.5)] = 0.0
            out_cut[np.nonzero(out_cut >= 0.5)] = 1.0
            
            train_dice = dice_coef_metric(out_cut, target.data.cpu().numpy())
            
            loss = train_loss(outputs, target)
            
            losses.append(loss.item())
            train_iou.append(train_dice)


            # Reset the gradients
            optimizer.zero_grad()
            # Perform backpropagation to compute gradients
            loss.backward()
            # Update the parameters with the computed gradients
            optimizer.step()
    
            if lr_scheduler:
                lr_scheduler.step()
        
        val_mean_iou = compute_iou(model, val_loader)
        
        loss_history.append(np.array(losses).mean())
        train_history.append(np.array(train_iou).mean())
        val_history.append(val_mean_iou)
        
        print("Epoch [%d]" % (epoch))
        print("Mean loss on train:", np.array(losses).mean(), 
              "\nMean DICE on train:", np.array(train_iou).mean(), 
              "\nMean DICE on validation:", val_mean_iou)
        
    return loss_history, train_history, val_history

结果

让我们在一个带有肿瘤的主题上评估我们的模型:

结果看起来相当不错!我们可以看到模型明显学到了关于图像结构的一些有用信息。然而,它可能可以更好地细化分割,这可以通过我们将很快讨论的更先进的技术来实现。U-Net至今仍然广泛使用,但有一个著名的模型达到了最先进的性能,称为nn-UNet。

· END ·

HAPPY LIFE

本文仅供学习交流使用,如有侵权请联系作者删除

相关推荐
流云枫木2 分钟前
C++ STL常用查询手册
开发语言·c++
凡人的AI工具箱8 分钟前
15分钟学 Python 第38天 :Python 爬虫入门(四)
开发语言·人工智能·后端·爬虫·python
码农超哥同学18 分钟前
Python知识点:在Python编程中,如何使用Gensim进行主题建模
开发语言·python·面试·编程
奔跑吧邓邓子22 分钟前
JSON 全知全解:深入探索 JSON 的奥秘
开发语言·python·json
theoxiong39 分钟前
深度解析:Tkinter 界面布局与优化技巧
python·ui·pyqt·tkinter
背水1 小时前
pytorch数据读入
人工智能·pytorch·python
陈序缘1 小时前
Go语言实现长连接并发框架 - 消息
linux·服务器·开发语言·后端·golang
Ambition_LAO1 小时前
不同版本的 Selenium 和 WebDriver 的 API 兼容性问题
开发语言·python
xs_20121 小时前
Python selenium库学习使用实操二
python·学习·selenium
worxfr1 小时前
Python Selenium常用语法汇总(包含XPath语法)
开发语言·python·selenium·xpath