多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

目录

    • [多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测](#多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测)

预测效果

基本介绍

1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)

RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2020b;

3.输入多个特征,输出单个变量,多变量时序预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)
    % requires 2 arguments
    % p_train: data matrix
    % model: generated via regRF_train function

	if nargin ~= 2
		error('need atleast 2 parameters, X matrix and model');
	end
	
	Y_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...
        model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);
    
    if ~isempty(find(model.coef, 1)) % for bias corr
        Y_hat = model.coef(1) + model.coef(2) * Y_hat;
    end

	clear mexRF_predict

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
week_泽5 天前
随机森林样本权重的计算-弱学习器
学习·算法·随机森林
开开心心_Every7 天前
A3试卷分割工具:免费转为A4格式可离线
游戏·随机森林·微信·pdf·excel·语音识别·最小二乘法
开开心心_Every9 天前
时间自动校准工具:一键同步网络服务器时间
游戏·随机森林·微信·pdf·逻辑回归·excel·语音识别
2401_894828129 天前
从原理到实战:随机森林算法全解析(附 Python 完整代码)
开发语言·python·算法·随机森林
玖日大大12 天前
随机森林算法原理及实战代码解析
算法·随机森林·机器学习
Pyeako16 天前
机器学习--矿物数据清洗(六种填充方法)
人工智能·python·随机森林·机器学习·pycharm·线性回归·数据清洗
千寻girling19 天前
Vue.js 前端开发实战 ( 电子版 ) —— 黑马
前端·javascript·vue.js·b树·决策树·随机森林·最小二乘法
小鸡吃米…24 天前
机器学习中的随机森林算法
算法·随机森林·机器学习
能源系统预测和优化研究1 个月前
传统机器学习(如xgboost、随机森林等)和深度学习(如LSTM等)在时间序列预测各有什么优缺点?
深度学习·随机森林·机器学习
开开心心就好1 个月前
OCR识别工具可加AI接口,快捷键截图翻译便捷
java·网络·windows·随机森林·电脑·excel·推荐算法