多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

目录

    • [多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测](#多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测)

预测效果

基本介绍

1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)

RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2020b;

3.输入多个特征,输出单个变量,多变量时序预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)
    % requires 2 arguments
    % p_train: data matrix
    % model: generated via regRF_train function

	if nargin ~= 2
		error('need atleast 2 parameters, X matrix and model');
	end
	
	Y_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...
        model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);
    
    if ~isempty(find(model.coef, 1)) % for bias corr
        Y_hat = model.coef(1) + model.coef(2) * Y_hat;
    end

	clear mexRF_predict

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
啊阿狸不会拉杆4 天前
《算法导论》第 21 章-用于不相交集合的数据结构
数据结构·c++·算法·随机森林
瓦香钵钵鸡7 天前
机器学习通关秘籍|Day 03:决策树、随机森林与线性回归
决策树·随机森林·机器学习·线性回归·最小二乘法·损失函数·信息熵
nju_spy7 天前
周志华院士西瓜书实战(二)MLP+SVM+贝叶斯分类器+决策树+集成学习
决策树·随机森林·机器学习·adaboost·svm·mlp·南京大学
WeiJingYu.9 天前
机器学习——随机森林
算法·随机森林·机器学习
赴33511 天前
机器学习 集成学习之随机森林
人工智能·python·随机森林·机器学习·集成学习·sklearn·垃圾邮件判断
Mr数据杨12 天前
数据与模型优化随机森林回归进行天气预测
算法·随机森林·回归
2202_7567496914 天前
02 基于sklearn的机械学习-KNN算法、模型选择与调优(交叉验证、朴素贝叶斯算法、拉普拉斯平滑)、决策树(信息增益、基尼指数)、随机森林
python·算法·决策树·随机森林·机器学习·sklearn
王小王-12315 天前
基于逻辑回归、随机森林、梯度提升树、XGBoost的广告点击预测模型的研究实现
随机森林·逻辑回归·xgboost·二分类·广告点击预测·广告点击模型
向左转, 向右走ˉ18 天前
随机森林算法原理及优缺点
算法·随机森林·机器学习
旧时光巷19 天前
【机器学习-4】 | 集成学习 / 随机森林篇
python·随机森林·机器学习·集成学习·sklearn·boosting·bagging