多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

目录

    • [多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测](#多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测)

预测效果

基本介绍

1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)

RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2020b;

3.输入多个特征,输出单个变量,多变量时序预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)
    % requires 2 arguments
    % p_train: data matrix
    % model: generated via regRF_train function

	if nargin ~= 2
		error('need atleast 2 parameters, X matrix and model');
	end
	
	Y_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...
        model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);
    
    if ~isempty(find(model.coef, 1)) % for bias corr
        Y_hat = model.coef(1) + model.coef(2) * Y_hat;
    end

	clear mexRF_predict

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
subject625Ruben2 天前
随机森林(Random Forest, RF)筛选回归数据(处理异常值)
算法·随机森林·数学建模·回归
十七算法实验室3 天前
Matlab实现北方苍鹰优化算法优化随机森林算法模型 (NGO-RF)(附源码)
开发语言·深度学习·算法·决策树·随机森林·机器学习·matlab
itwangyang5203 天前
2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)
人工智能·深度学习·随机森林·机器学习·数据分析
baijin_cha5 天前
机器学习基础05_随机森林&线性回归
随机森林·机器学习·线性回归
学不会lostfound6 天前
一、机器学习算法与实践_07支持向量机与集成学习算法笔记
随机森林·机器学习·支持向量机·集成学习·xgboost·lightgbm
谢眠7 天前
机器学习day5-随机森林和线性代数1
线性代数·随机森林·机器学习
十七算法实验室8 天前
Matlab实现麻雀优化算法优化随机森林算法模型 (SSA-RF)(附源码)
算法·决策树·随机森林·机器学习·支持向量机·matlab·启发式算法
小馒头学python9 天前
机器学习中的分类:决策树、随机森林及其应用
人工智能·python·决策树·随机森林·机器学习·分类
秀儿还能再秀10 天前
机器学习:随机森林——基于决策树的模型
笔记·决策树·随机森林·机器学习
_清豆°12 天前
机器学习(七)——集成学习(个体与集成、Boosting、Bagging、随机森林RF、结合策略、多样性增强、多样性度量、Python源码)
人工智能·随机森林·机器学习·adaboost·集成学习·boosting·bagging