多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

目录

    • [多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测](#多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测)

预测效果

基本介绍

1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)

RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2020b;

3.输入多个特征,输出单个变量,多变量时序预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)
    % requires 2 arguments
    % p_train: data matrix
    % model: generated via regRF_train function

	if nargin ~= 2
		error('need atleast 2 parameters, X matrix and model');
	end
	
	Y_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...
        model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);
    
    if ~isempty(find(model.coef, 1)) % for bias corr
        Y_hat = model.coef(1) + model.coef(2) * Y_hat;
    end

	clear mexRF_predict

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
马特说6 天前
基于随机森林的金融时间序列预测系统:从数据处理到实时预测的完整流水线
算法·随机森林·金融
木头左8 天前
决策树与随机森林Python实践
python·随机森林
Wilber的技术分享12 天前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
机器学习之心13 天前
顶级SCI极光优化算法!PLO-Transformer-GRU多变量时间序列预测,Matlab实现
gru·多变量时间序列预测·顶级sci极光优化算法·plo-transformer
摸鱼仙人~1 个月前
使用随机森林实现目标检测
随机森林
no_work1 个月前
基于python机器学习来预测含MLP决策树LGBM随机森林XGBoost等
人工智能·python·决策树·随机森林·机器学习
机器学习之心1 个月前
光伏功率预测 | RF随机森林多变量单步光伏功率预测(Matlab完整源码和数据)
算法·随机森林·matlab·多变量单步光伏功率预测
愿所愿皆可成1 个月前
机器学习之集成学习
人工智能·随机森林·机器学习·集成学习
殇者知忧1 个月前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉