Pytorch的可视化

1 使用 wandb进行可视化训练过程

本文章将从wandb的安装、wandb的使用、demo的演示进行讲解。

1.1 如何安装wandb?

wandb的安装比较简单,在终端中执行如下的命令即可:

cmd 复制代码
pip install wandb

在安装完成之后,我们需要,去官网注册一个自己的账号并复制一下自己的API keys,在本地进行登录即可:

cmd 复制代码
wandb login

1.2 wandb的使用

其实wandb的使用是十分简单的,仅需要在自己的代码加入几行代码即可:

python 复制代码
import wandb
wandb.init(project = "my-project", entity = "my-name")

这里的project 和 entity是wandb上创建项目的名称和用户名,可以在官网上参考创建项目,官方文档

使用 wandb.init() 在 Python 脚本或笔记本中初始化 W&B Run 对象,并使用超参数名称和值的键值对将字典传递给参数:config

python 复制代码
run = wandb.init(
    # Set the project where this run will be logged
    project="my-awesome-project",
    # Track hyperparameters and run metadata
    config={
        "learning_rate": 0.01,
        "epochs": 10,
    },
)

运行是 W&B 的基本组成部分。您将经常使用它们来跟踪指标、创建日志、创建作业等。

1.3 demo的演示

综上所述,训练脚本可能类似于以下代码示例。突出显示的代码显示特定于 W&B 的代码。 请注意,我们添加了模拟机器学习训练的代码。

python 复制代码
# train.py
import wandb
import random  # for demo script

wandb.login()

epochs = 10
lr = 0.01

run = wandb.init(
    # Set the project where this run will be logged
    project="my-awesome-project",
    # Track hyperparameters and run metadata
    config={
        "learning_rate": lr,
        "epochs": epochs,
    },
)

offset = random.random() / 5
print(f"lr: {lr}")

# simulating a training run
for epoch in range(2, epochs):
    acc = 1 - 2**-epoch - random.random() / epoch - offset
    loss = 2**-epoch + random.random() / epoch + offset
    print(f"epoch={epoch}, accuracy={acc}, loss={loss}")
    wandb.log({"accuracy": acc, "loss": loss})

# run.log_code()

就是这样!导航到 W&B 应用程序,查看 https://wandb.ai/home 中我们使用 W&B 记录的指标(准确性和损失)在每个训练步骤中是如何改进的。

相关推荐
MARS_AI_2 小时前
云蝠智能 Voice Agent 落地展会邀约场景:重构会展行业的智能交互范式
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
weixin_422456442 小时前
第N7周:调用Gensim库训练Word2Vec模型
人工智能·机器学习·word2vec
FreakStudio4 小时前
一文速通 Python 并行计算:13 Python 异步编程-基本概念与事件循环和回调机制
python·pycharm·协程·多进程·并行计算·异步编程
HuggingFace5 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
豌豆花下猫5 小时前
让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
后端·python·ai
夏末蝉未鸣016 小时前
python transformers库笔记(BertForTokenClassification类)
python·自然语言处理·transformer
企企通采购云平台6 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍6 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_6 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫7 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习