Pytorch的可视化

1 使用 wandb进行可视化训练过程

本文章将从wandb的安装、wandb的使用、demo的演示进行讲解。

1.1 如何安装wandb?

wandb的安装比较简单,在终端中执行如下的命令即可:

cmd 复制代码
pip install wandb

在安装完成之后,我们需要,去官网注册一个自己的账号并复制一下自己的API keys,在本地进行登录即可:

cmd 复制代码
wandb login

1.2 wandb的使用

其实wandb的使用是十分简单的,仅需要在自己的代码加入几行代码即可:

python 复制代码
import wandb
wandb.init(project = "my-project", entity = "my-name")

这里的project 和 entity是wandb上创建项目的名称和用户名,可以在官网上参考创建项目,官方文档

使用 wandb.init() 在 Python 脚本或笔记本中初始化 W&B Run 对象,并使用超参数名称和值的键值对将字典传递给参数:config

python 复制代码
run = wandb.init(
    # Set the project where this run will be logged
    project="my-awesome-project",
    # Track hyperparameters and run metadata
    config={
        "learning_rate": 0.01,
        "epochs": 10,
    },
)

运行是 W&B 的基本组成部分。您将经常使用它们来跟踪指标、创建日志、创建作业等。

1.3 demo的演示

综上所述,训练脚本可能类似于以下代码示例。突出显示的代码显示特定于 W&B 的代码。 请注意,我们添加了模拟机器学习训练的代码。

python 复制代码
# train.py
import wandb
import random  # for demo script

wandb.login()

epochs = 10
lr = 0.01

run = wandb.init(
    # Set the project where this run will be logged
    project="my-awesome-project",
    # Track hyperparameters and run metadata
    config={
        "learning_rate": lr,
        "epochs": epochs,
    },
)

offset = random.random() / 5
print(f"lr: {lr}")

# simulating a training run
for epoch in range(2, epochs):
    acc = 1 - 2**-epoch - random.random() / epoch - offset
    loss = 2**-epoch + random.random() / epoch + offset
    print(f"epoch={epoch}, accuracy={acc}, loss={loss}")
    wandb.log({"accuracy": acc, "loss": loss})

# run.log_code()

就是这样!导航到 W&B 应用程序,查看 https://wandb.ai/home 中我们使用 W&B 记录的指标(准确性和损失)在每个训练步骤中是如何改进的。

相关推荐
sali-tec3 分钟前
C# 基于halcon的视觉工作流-章42-手动识别文本
开发语言·人工智能·算法·计算机视觉·c#·ocr
mit6.8246 分钟前
[VoiceRAG] 前端实时通信 | useRealTime钩子
人工智能
B站_计算机毕业设计之家10 分钟前
机器学习实战项目:Python+Flask 汽车销量分析可视化系统(requests爬车主之家+可视化 源码+文档)✅
人工智能·python·机器学习·数据分析·flask·汽车·可视化
CV-杨帆31 分钟前
论文阅读:arxiv 2025 Scaling Laws for Differentially Private Language Models
论文阅读·人工智能·语言模型
羊羊小栈34 分钟前
基于「多模态大模型 + BGE向量检索增强RAG」的航空维修智能问答系统(vue+flask+AI算法)
vue.js·人工智能·python·语言模型·flask·毕业设计
viperrrrrrrrrr735 分钟前
GPT系列模型-详解
人工智能·gpt·llm
星期天要睡觉38 分钟前
模型部署——Flask 部署 PyTorch 模型
pytorch·python·flask
weixin_4569042743 分钟前
SHAP可视化代码详细讲解
python
DTS小夏1 小时前
算法社Python基础入门面试题库(新手版·含答案)
python·算法·面试
刘一哥GIS1 小时前
Windows环境搭建:PostGreSQL+PostGIS安装教程
数据库·python·arcgis·postgresql·postgis