【PyTorch】PyTorch中张量(Tensor)切片操作

PyTorch深度学习总结

第三章 PyTorch中张量(Tensor)切片操作


文章目录


一、前言

上文介绍了PyTorch中改变张量(Tensor)形状的操作,本文主要介绍张量切片操作。


二、获取张量中的元素

1、切片(行、列数)方法

python 复制代码
# 引入库
import torch

# 生成张量
A = torch.arange(9).reshape(3, 3)
print(A)

生成张量A:

tensor(

\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]) *** ** * ** *** 现截取A\[0\]: ```python print(A[0]) # 截取最外围括号内第一个括号的内容,第一个维度第一行的内容 ``` **结果为:** tensor(\[0, 1, 2\]) ② ```python # 引入库 import torch # 生成张量 B = torch.arange(9).reshape(1, 3, 3) print(B) ``` **生成张量B:** tensor( \[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** 现截取B\[0\]: ```python print(B[0]) # 截取最外围括号内第括号的内容,第一个维度第一行的内容 ``` **结果为:** tensor( \[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]) ③根据上文张量B进行截取 ```python print(B[0, 1:2, 1:2]) ``` **结果为:** tensor(\[\[4\]\]) `注意此时[1:2]指第2个元素开头到第三个元素为至,且不包含第三个元素。(属于包含左边不包含右边,先行后列)` *** ** * ** *** ```python print(B[0, 1:3, 1:2]) ``` **结果为:** tensor(\[\[4\], \[7\]\]) *** ** * ** *** ```python print(B[0, -1, -2]) ``` **结果为:** tensor(7) *** ** * ** *** ```python print(B[0, -3:-1, -2]) # 第一个维度,倒数第三行到倒数二行,倒数第二列的元素 ``` **结果为:** tensor(\[1, 4\]) ④通过比较关系输出元素 ```python print(B[B>=3]) ``` **结果为:** tensor(\[3, 4, 5, 6, 7, 8\]) `注意此处为获取元素组成1维张量`

2、torch.where()函数

python 复制代码
C = -B
D = torch.where(B>4, B, C)
print(D)

输出结果为:

tensor(

\[\[ 0, -1, -2\], \[-3, -4, 5\], \[ 6, 7, 8\]\]\])

3、使元素置零的操作

函数 描述
torch.tril(A, diagonal=0) 将A以第一个元素为对角线的直线,将上三角置零
torch.triu(A, diagonal=0) 将A以第一个元素为对角线的直线,将下三角置零
torch.diag(A) 保留对角线,将其他元素全部置零,输入必须是二维张量

示例:

torch.tril():

python 复制代码
E1 = torch.tril(B, diagonal=0)
print(E1)

输出结果为:

tensor(

\[\[0, 0, 0\], \[3, 4, 0\], \[6, 7, 8\]\]\]) *** ** * ** *** ```python E2 = torch.tril(B, diagonal=1) print(E2) ``` 输出结果为: tensor( \[\[\[0, 1, 0\], \[3, 4, 5\], \[6, 7, 8\]\]\]) **torch.triu():** ```python F = torch.triu(B, diagonal=0) print(F) ``` 输出结果为: tensor( \[\[\[0, 1, 2\], \[0, 4, 5\], \[0, 0, 8\]\]\]) **torch.diag():** ```python H = torch.diag(A) print(H) ``` 输出结果为: tensor(\[0, 4, 8\])


相关推荐
FreakStudio10 分钟前
一文速通 Python 并行计算:13 Python 异步编程-基本概念与事件循环和回调机制
python·pycharm·协程·多进程·并行计算·异步编程
HuggingFace2 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
豌豆花下猫2 小时前
让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
后端·python·ai
夏末蝉未鸣012 小时前
python transformers库笔记(BertForTokenClassification类)
python·自然语言处理·transformer
企企通采购云平台2 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍3 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_3 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫4 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明4 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
weixin_418813874 小时前
Python-可视化学习笔记
笔记·python·学习