【PyTorch】PyTorch中张量(Tensor)切片操作

PyTorch深度学习总结

第三章 PyTorch中张量(Tensor)切片操作


文章目录


一、前言

上文介绍了PyTorch中改变张量(Tensor)形状的操作,本文主要介绍张量切片操作。


二、获取张量中的元素

1、切片(行、列数)方法

python 复制代码
# 引入库
import torch

# 生成张量
A = torch.arange(9).reshape(3, 3)
print(A)

生成张量A:

tensor(

\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]) *** ** * ** *** 现截取A\[0\]: ```python print(A[0]) # 截取最外围括号内第一个括号的内容,第一个维度第一行的内容 ``` **结果为:** tensor(\[0, 1, 2\]) ② ```python # 引入库 import torch # 生成张量 B = torch.arange(9).reshape(1, 3, 3) print(B) ``` **生成张量B:** tensor( \[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** 现截取B\[0\]: ```python print(B[0]) # 截取最外围括号内第括号的内容,第一个维度第一行的内容 ``` **结果为:** tensor( \[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]) ③根据上文张量B进行截取 ```python print(B[0, 1:2, 1:2]) ``` **结果为:** tensor(\[\[4\]\]) `注意此时[1:2]指第2个元素开头到第三个元素为至,且不包含第三个元素。(属于包含左边不包含右边,先行后列)` *** ** * ** *** ```python print(B[0, 1:3, 1:2]) ``` **结果为:** tensor(\[\[4\], \[7\]\]) *** ** * ** *** ```python print(B[0, -1, -2]) ``` **结果为:** tensor(7) *** ** * ** *** ```python print(B[0, -3:-1, -2]) # 第一个维度,倒数第三行到倒数二行,倒数第二列的元素 ``` **结果为:** tensor(\[1, 4\]) ④通过比较关系输出元素 ```python print(B[B>=3]) ``` **结果为:** tensor(\[3, 4, 5, 6, 7, 8\]) `注意此处为获取元素组成1维张量`

2、torch.where()函数

python 复制代码
C = -B
D = torch.where(B>4, B, C)
print(D)

输出结果为:

tensor(

\[\[ 0, -1, -2\], \[-3, -4, 5\], \[ 6, 7, 8\]\]\])

3、使元素置零的操作

函数 描述
torch.tril(A, diagonal=0) 将A以第一个元素为对角线的直线,将上三角置零
torch.triu(A, diagonal=0) 将A以第一个元素为对角线的直线,将下三角置零
torch.diag(A) 保留对角线,将其他元素全部置零,输入必须是二维张量

示例:

torch.tril():

python 复制代码
E1 = torch.tril(B, diagonal=0)
print(E1)

输出结果为:

tensor(

\[\[0, 0, 0\], \[3, 4, 0\], \[6, 7, 8\]\]\]) *** ** * ** *** ```python E2 = torch.tril(B, diagonal=1) print(E2) ``` 输出结果为: tensor( \[\[\[0, 1, 0\], \[3, 4, 5\], \[6, 7, 8\]\]\]) **torch.triu():** ```python F = torch.triu(B, diagonal=0) print(F) ``` 输出结果为: tensor( \[\[\[0, 1, 2\], \[0, 4, 5\], \[0, 0, 8\]\]\]) **torch.diag():** ```python H = torch.diag(A) print(H) ``` 输出结果为: tensor(\[0, 4, 8\])


相关推荐
腾讯云开发者3 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗3 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
喵手3 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2501_944934733 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
啊森要自信4 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
helloworldandy4 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
2401_836235864 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs4 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习