前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。
目录
[在程序中加入并配置 Sentinel](#在程序中加入并配置 Sentinel)
前言
限流的目的是通过对并发访问/请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理
Sentinel是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。
在 Sentinel 中,实现限流的方法有以下两种:
- 通过代码方法实现限流。
- 通过 Sentinel 控制台设置实现限流。
接下来我们讲解以上两种方式形式如何实现限流保护
通过代码实现限流
通过代码实现限流需要以下两步方可实现:
- 定义资源
- 定义限流规则
定义资源
定义资源可以通过代码方式或注解方式来实现,具体实现如下。
通过代码定义资源
可以通过代码的的方式 SphU.entry("resourceName") 来定义资源,具体实现代码如下:
java
@RequestMapping("/getuser")
public String getUser() {
try (Entry entry = SphU.entry("getuser")) {
// 被保护逻辑
return "User";
} catch (Exception e) {
// 限流之后的业务逻辑
return "限流";
}
}
PS:SphU 是 Sentinel Protection Hotspot Util 的缩写,Sentinel 热点保护工具类。
通过注解方式定义资源
通过注解 @SentinelResource 也可以实现资源的定义,如下代码所示:
java
// 定义资源和限流后触发的方法
@SentinelResource(value = "resourceName", blockHandler = "myBlockHandler")
@RequestMapping("/getnamebyid")
public String getNameById(Integer id) {
return id + "-lei";
}
// 限流后触发的方法
public String myBlockHandler(Integer id, BlockException blockException) {
String msg = "Do myBlockHandler method.";
System.out.println(msg);
return msg;
}
其中,value 属性定义的资源名称,blockHandler 定义的是原方法被限流/降级/系统保护之后执行的方法。
注意事项
- 定义的限流方法 myBlockHandler 必须和原方法的返回值、参数保持一致,否则会报错(Sentinel通过反射调用的限流方法);
- 限流方法必须添加 BlockException 参数,不然会因为找不到合适的限流后执行方法,而提示报错;
@SentinelResource 注解属性说明:
- value:资源名称,必需项(不能为空)。
- entryType:资源调用的流量类型:入口流量(EntryType.IN)和出口流量(EntryType.OUT),注意系统规则只对 IN 生效。
- blockHandler/blockHandlerClass: 限流和熔断时执行 BlockException 所对应的方法名。
- fallback/fallbackClass:非 BlockException 时,其他非限流、非熔断时异常对应的方法。
- exceptionsToIgnore:用于指定哪些异常被排除掉,不会计入异常统计中,也不会进入 fallback 逻辑中,而是会原样抛出。
注:1.6.0 之前的版本 fallback 函数只针对熔断降级异常(DegradeException)进行处理,不能针对业务异常进行处理。
定义限流规则
在 Spring Boot 项目中,只需要将限流规则添加到项目启动时执行即可,如下代码所示:
java
public static void main(String[] args) {
SpringApplication.run(SentinelDemoApplication.class, args);
// 加载限流规则
initFlowRules();
}
而限流规则定义如下:
java
private static void initFlowRules() {
List<FlowRule> rules = new ArrayList<>();
FlowRule rule = new FlowRule();
rule.setResource("resourceName"); // 资源名称
rule.setGrade(RuleConstant.FLOW_GRADE_QPS); // 根据 QPS 限流
rule.setCount(1); // QPS 阈值【每秒只允许通过一个请求】
rule.setStrategy(RuleConstant.STRATEGY_DIRECT); // 调用关系限流策略【非必须设置】
rule.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_DEFAULT); // 流控效果【非必须设置】
rule.setClusterMode(false); // 是否集群限流【非必须设置,默认非集群】
rules.add(rule);
FlowRuleManager.loadRules(rules);
}
其中:
- setStrategy:设置调用关系限流策略,包含的值有:
- 直接(RuleConstant.STRATEGY_DIRECT)【默认值】
- 链路(RuleConstant.STRATEGY_RELATE)
- 关联(RuleConstant.STRATEGY_CHAIN)
- setControlBehavior:设置流控效果,包含的值有:
- 直接拒绝(RuleConstant.CONTROL_BEHAVIOR_DEFAULT)【默认值】
- 冷启动(RuleConstant.CONTROL_BEHAVIOR_WARM_UP)
- 匀速启动(RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER)
- 冷启动+匀速启动(RuleConstant.CONTROL_BEHAVIOR_WARM_UP_RATE_LIMITER)
通过控制台实现限流
Sentinel 还可以使用控制台的方式进行限流,这样子可以减少对原项目代码的入侵,不过默认情况下限流规则是保存在内存中,所以重启之后规则会丢失,默认情况下下的推送流程如下:
它的实现步骤如下:
- 下载并运行 Sentinel Dashboard(控制台)。
- 在程序中加入并配置 Sentinel Dashboard。
- 在 Sentinel Dashboard 配置限流/熔断等规则。
- 验证效果。
下载并运行Sentinel控制台
我们可以从 Sentinel 官方仓库下载最新版本的控制台 jar 包,访问地址:github.com/sentinel
使用如下命令启动控制台:
java -jar sentinel-dashboard.jar --server.port=18080
从 Sentinel 1.6.0 起,Sentinel 控制台引入基本的登录功能,默认用户名和密码都是 sentinel。可以参考 鉴权模块文档 配置用户名和密码,命令如下:
java -Dserver.port=18080 -Dsentinel.dashboard.auth.username=sentinel -Dsentinel.dashboard.auth.password=123456 -jar sentinel-dashboard.jar
Sentinel 控制台启动时的可选配置项:
配置项 | 默认值 | 描述 |
---|---|---|
server.port | 8080 | 指定端口 |
csp.sentinel.dashboard.server | localhost:8080 | 指定地址 |
project.name | - | 指定程序的名称 |
sentinel.dashboard.auth.username | sentinel | Dashboard 登录账号(需要版本1.6+) |
sentinel.dashboard.auth.password | sentinel | Dashboard 登录密码(需要版本1.6+) |
server.servlet.session.timeout | 30分钟 | 登录 Session 过期时间(需要版本1.6+) |
配置为 7200 表示 7200 秒 | ||
配置为 60m 表示 60 分钟 |
在程序中加入并配置 Sentinel
在需要进行流控的项目中加入 Sentinel 依赖:
java
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
在项目中配置 Sentinel Dashboard 地址:
java
spring:
application:
name: sentinel-dashboard-demo
cloud:
sentinel:
transport:
dashboard: localhost:18080
client-ip: 127.0.0.1
port: 8721
heartbeat-interval-ms: 10000
其中,只有 dashboard 是必输项,其他的都可以省略,他们的含义如下:
- dashboard:sentinel 控制台地址。
- client-ip:当前客户端 IP,不设置自动选择一个 IP 注册。
- port:与 sentinel 通讯的端口,如不设置,会从 8719 开始扫描,依次 +1,直到找到未被占用的接口。
- heartbeat-interval-ms:心跳发送周期,默认值是 10s。
设置规则
新增限流规则
参数说明:
- 针对来源:Sentinel 可以针对调用者进行限流,填写具体微服务名时,指定对此微服务进行限流 ,默认值为 default(不区分来源,全部限制)。
- 阈值类型/单机阈值 :用于限制和控制流量的一种度量标准的类型,可以为 QPS(Queries Per Second,每秒请求数)也可以为"并发线程数"。
- QPS:每秒请求达到此值开始限流。
- 并发线程数:请求此资源的线程达到某个值时限流。每个请求分配一个线程,当请求执行时间长时,很快就会触发限流,相反如果线程执行速度快,那么限流触发就会概率就会比较小。
- 流控模式 :流量控制模式。
- 直接:接口达到限流条件时,直接限流。
- 关联:当关联的资源达到阈值时,就限流自己。
- 链路:指定资源从入口资源进来的流量,如果达到阈值,就进行限流。
- 流控效果 :流量控制效果。
- 快速失败:该方式是默认的流量控制方式,比如 QPS 超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出 FlowException。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。
- 排队等待(也叫匀速通过):排队等待会严格控制请求通过的间隔时间,让请求稳定且匀速的通过,可以用来处理间隔性突发的高流量。例如抢票软件,在某一秒或者一分钟内有大量的请求到来,而接下来的一段时间里处于空闲状态,我们希望系统能够在接下来的空余时间里也能出去这些请求,而不是直接拒绝。在设置排队等待时,需要填写超时时间。
- Warm Up:此项叫做预热或者冷启动方式,此模式主要是防止流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮,通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。当使用 Warm Up 模式时,我们还需要指定启动时开放的 QPS 比例(DEFAULT_COLD_FACTOR,默认值为 3,代表 30%),以及系统预热所需时长(warmUpPeriodSec,默认值是 10 秒)。
限流页面当"是否集群"选中之后,就会是这样的界面:
其中最后一项"失败退化"中的 Token Server 含义如下: Token Server 是 Sentinel 用于集群流量控制的关键组件,它负责分发令牌并进行流量控制。当 Sentinel 的应用程序配置为集群限流模式时,它会向 Token Server 请求令牌,然后根据令牌情况来进行流量控制。如果 Token Server 不可用,可能是由于网络故障、Token Server 实例崩溃等原因,这时候无法从 Token Server 获取令牌。 Token Server 配置的含义如下:
- 当配置选项为"是"时:表示当 Token Server 不可用时,Sentinel 会自动切换为单机限流模式。在单机限流模式中,Sentine 会从本地的限流规则进行流量控制,不再依赖 Token Server。这样可以保证即使 Token Server 不可用,也能够继续对流量进行限制。
- 当配置选项为"否"时:表示当 Token Server 不可用时,Sentinel 不会自动切换为单机限流模式,流量控制会被暂停,即无法进行限流,可能会导致服务负载过高。
自定义限流错误信息
当请求被限流后,返回的响应信息往往不是很友好,我们这里统一处理返回异常信息,实现BlockExceptionHandler接口
java
@Configuration
public class MySentinelConfig implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
// BlockException 异常接口,其子类为Sentinel五种规则异常的实现类
// AuthorityException 授权异常
// DegradeException 降级异常
// FlowException 限流异常
// ParamFlowException 参数限流异常
// SystemBlockException 系统负载异常
String msg = null;
if (e instanceof FlowException) {
msg = "限流";
} else if (e instanceof DegradeException) {
msg = "降级";
} else if (e instanceof ParamFlowException) {
msg = "热点参数限流";
} else if (e instanceof SystemBlockException) {
msg = "系统规则(负载/...不满足要求)";
} else if (e instanceof AuthorityException) {
msg = "授权规则不通过";
}
R error = R.error(500, msg);
response.setCharacterEncoding("UTF-8");
response.setContentType("application/json");
response.getWriter().write(JSON.toJSONString(error));
}
}
测试
当访问超出阈值时,响应返回自定义错误信息
java
{"msg":"限流","code":500}
总结
本篇文章主要介绍了Sentinel的两种实现限流的方式,除此之外当然还有许多功能与限流规则,这里由于篇幅问题就不一一介绍了,有兴趣的朋友可以自己探索一下。我个人觉得Sentinel是一个非常优秀的组件,比原来用的Hystrix的确有着非常大的改进,值得推荐。