Hive的CTE 公共表达式

目录

1.语法

[2. 使用场景](#2. 使用场景)

select语句

[chaining CTEs 链式](#chaining CTEs 链式)

union语句

[insert into 语句](#insert into 语句)

[create table as 语句](#create table as 语句)

前言

Common Table Expressions(CTE):公共表达式是一个临时的结果集,该结果集是从with子句中指定的查询派生而来的,紧跟在select 或 insert关键字之前。CTE可以在 select,insert, create table as select 等语句中使用。

1.语法

sql 复制代码
[wtih CommonTableExpression]
select
        column1,
        column2, ...
from table 
[where 条件] 
[group by column]
[order by column] 
[cluster by column| [distribute by column] [sort by column] 
[limit [offset,] rows];

2. 使用场景

select语句

sql 复制代码
with tmp as (
    select
        oid,
        uid,
        otime,
        date_format(otime, 'yyyy-MM') as dt,
        oamount,
        ---计算rk的目的是为了获取记录中的第一条
        row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) rk
    from t_order
)
 select
    uid,
    --每个用户一月份的订单数
    sum(if(dt = '2018-01', 1, 0)) as  m1_count,
    --每个用户二月份的订单数
    sum(if(dt = '2018-02', 1, 0)) as  m2_count
from tmp
 group by uid
 having m1_count >0 and m2_count=0;

chaining CTEs 链式

sql 复制代码
with tmp1 as (
    select
        oid,
        uid,
        otime,
        date_format(otime, 'yyyy-MM') as dt,
        oamount,
        ---计算rk的目的是为了获取记录中的第一条
        row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) as rk
    from t_order
),
     tmp2 as
         (select
              uid,
              --每个用户一月份的订单数
              sum(if(dt = '2018-01', 1, 0)) as m1_count,
              --每个用户二月份的订单数
              sum(if(dt = '2018-02', 1, 0)) as m2_count
          from tmp1
          group by uid
          having m1_count > 0
             and m2_count = 0)
select * from tmp2 limit 1;

union语句

sql 复制代码
with q1 as (select * from student where num = 95002),
     q2 as (select * from student where num = 95004)
select * from q1 union all select * from q2;

insert into 语句

sql 复制代码
with tmp1 as (
    select
        oid,
        uid,
        otime,
        date_format(otime, 'yyyy-MM') as dt,
        oamount,
        ---计算rk的目的是为了获取记录中的第一条
        row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) as rk
    from t_order
),
     tmp2 as
         (select
              uid,
              --每个用户一月份的订单数
              sum(if(dt = '2018-01', 1, 0)) as m1_count,
              --每个用户二月份的订单数
              sum(if(dt = '2018-02', 1, 0)) as m2_count
          from tmp1
          group by uid
          having m1_count > 0
             and m2_count = 0)

insert into tmp3
select * from tmp2 limit 10;

create table as 语句

sql 复制代码
--- 从tmp2 表中取10条数据,基于此创建表tmp3 
create table tmp3 as 
with tmp1 as (
    select
        oid,
        uid,
        otime,
        date_format(otime, 'yyyy-MM') as dt,
        oamount,
        ---计算rk的目的是为了获取记录中的第一条
        row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) as rk
    from t_order
),
     tmp2 as
         (select
              uid,
              --每个用户一月份的订单数
              sum(if(dt = '2018-01', 1, 0)) as m1_count,
              --每个用户二月份的订单数
              sum(if(dt = '2018-02', 1, 0)) as m2_count
          from tmp1
          group by uid
          having m1_count > 0
             and m2_count = 0)
select * from tmp2 limit 10;
相关推荐
老徐电商数据笔记1 天前
技术复盘第四篇:Kimball维度建模在电商场景的实战应用
大数据·数据仓库·技术面试
程序员小羊!2 天前
数仓数据基线,在不借助平台下要怎么做?
大数据·数据仓库
Hello.Reader2 天前
Flink SQL 的 LOAD MODULE 深度实战——加载 Hive 模块、理解模块发现与常见坑
hive·sql·flink
老徐电商数据笔记2 天前
技术复盘第二篇:电商数据主题域划分企业级实践
大数据·数据库·数据仓库·零售·教育电商·技术面试
亲亲菱纱2 天前
hive数仓分层
数据仓库
老徐电商数据笔记2 天前
技术复盘第三篇:百果园新零售核心业务流程主题域划分详解
大数据·数据仓库·零售·技术面试
howard20053 天前
Hive实战任务 - 9.1 实现词频统计
hive·词频统计
colorknight3 天前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
满目山河•3 天前
二、复制三台虚拟机
hive·hadoop·hbase
howard20053 天前
Hive实战任务 - 9.3 实现学生信息排序和统计
hive·排序·汇总·学生信息