FAST角点检测算法

FAST(Features from Accelerated Segment Test)角点检测算法是一种快速且高效的角点检测方法。它通过检测每个像素周围的连续像素集合,确定是否为角点。以下是 FAST 角点检测算法的基本流程:

FAST 角点检测算法的基本过程主要包括以下几个步骤:

  1. 选择一个候选点p作为中心点,并设置一个合适的亮度阈值T。

  2. 在候选点的周围选择一个圆形区域,通常圆周上会选择16个等间隔的点(像素),这些点称为测试点。

  3. 以点p的亮度Ip和阈值T作为参照,快速检测圆周上的16个测试点。如果存在连续的N个测试点的亮度要么都高于Ip+T,要么都低于Ip-T,则认为点p是一个角点。原始的FAST算法中N被设置为12。

  4. 用这种方式对图像中的每个像素进行测试,将满足条件的点标记为角点候选。

  5. 过滤角点候选,采用非最大值抑制算法,去除非局部最大值点,从而找到真正的角点。

一句话总结:如果一个点,和周围好多个点,都不一样,那么它就是个角点。否则,它是个稀松平常的点。
基本思想:谁是少数派?

FAST 角点检测算法通过比较灰度值之差,快速判断像素点是否为角点。它具有低计算复杂度和快速执行速度,适用于实时图像处理和高效角点检测需求的场景。该算法在计算机视觉和图像处理中广泛应用于物体识别、跟踪和图像特征提取等任务。

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 11 16:32:51 2024

@author: Administrator
"""

import cv2

# 读取图像
img = cv2.imread('image.jpg', 0)

# 创建 FAST 角点检测器对象
fast = cv2.FastFeatureDetector_create()

# 检测角点
kp = fast.detect(img, None)

# 在图像上绘制检测到的角点
output_img = cv2.drawKeypoints(img, kp, None, color=(0,255,0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

# 显示结果图像
cv2.imshow('FAST Corners', output_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
CSDN_RTKLIB1 分钟前
C++仿函数
c++·算法·stl
WJSKad12359 分钟前
基于改进YOLO11的超市商品与电子设备多类别目标检测方法C3k2-ConvAttn
人工智能·目标检测·计算机视觉
学嵌入式的小杨同学17 分钟前
【嵌入式 C 语言高频考点】周测 + 期中真题解析:从基础语法到编程实战
c语言·数据结构·数据库·vscode·算法·面试
沉默-_-25 分钟前
力扣hot100双指针专题解析2(C++)
java·c++·算法·蓝桥杯·双指针
福楠26 分钟前
C++ | 红黑树
c语言·开发语言·数据结构·c++·算法
丝瓜蛋汤29 分钟前
Proof of the contraction mapping theorem
人工智能·算法
We་ct1 小时前
LeetCode 58. 最后一个单词的长度:两种解法深度剖析
前端·算法·leetcode·typescript
小袁顶风作案1 小时前
leetcode力扣——452. 用最少数量的箭引爆气球
学习·算法·leetcode·职场和发展
deep_drink1 小时前
【经典论文精读(一)】Isomap:非线性降维的全局几何框架(Science 2000)
人工智能·算法·机器学习
mjhcsp1 小时前
莫比乌斯反演总结
c++·算法