多模态基础---BERT

1. BERT简介

BERT用于将一个输入的句子转换为word_embedding,本质上是一个transformer的Encoder。

1.1 BERT的两种训练方法

  1. 预测被遮挡的单词
  2. 预测两个句子是否是相邻的句子
    1和2是同时训练的

1.1 BERT的四种用法

  1. 预测句子的类别:输入一个句子,输出一个类别
  2. 预测句子中每个单词的类别:输入一个句子,输出每个单词的类别
  3. 预测两个句子是否相邻:输入两个句子,输出判断是否相邻的类别
  4. 预测某个问题在文章中的答案:输入一个问题和一篇文章,输出问题在文章中答案的位置(索引)didj

case1: case2:
case3:

case4:


相关推荐
杜子不疼.1 小时前
计算机视觉热门模型手册:Spring Boot 3.2 自动装配新机制:@AutoConfiguration 使用指南
人工智能·spring boot·计算机视觉
无心水3 小时前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
北辰alk8 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云8 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10438 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里8 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1789 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京9 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC9 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬9 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能