多模态基础---BERT

1. BERT简介

BERT用于将一个输入的句子转换为word_embedding,本质上是一个transformer的Encoder。

1.1 BERT的两种训练方法

  1. 预测被遮挡的单词
  2. 预测两个句子是否是相邻的句子
    1和2是同时训练的

1.1 BERT的四种用法

  1. 预测句子的类别:输入一个句子,输出一个类别
  2. 预测句子中每个单词的类别:输入一个句子,输出每个单词的类别
  3. 预测两个句子是否相邻:输入两个句子,输出判断是否相邻的类别
  4. 预测某个问题在文章中的答案:输入一个问题和一篇文章,输出问题在文章中答案的位置(索引)didj

case1: case2:
case3:

case4:


相关推荐
Hy行者勇哥39 分钟前
多源数据抽取与推送模块架构设计
人工智能·个人开发
寒秋丶1 小时前
Milvus:Json字段详解(十)
数据库·人工智能·python·ai·milvus·向量数据库·rag
长桥夜波2 小时前
机器学习日报07
人工智能·机器学习
长桥夜波2 小时前
机器学习日报11
人工智能·机器学习
一个处女座的程序猿4 小时前
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
人工智能·自然语言处理·小语言模型·slms
档案宝档案管理7 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT8 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8248 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_8 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年9 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互