目录

机器学习和统计学的区别?

1、本质区别:

  1. 目标:机器学习的核心目标是建立一个可以自动学习和改进的模型,以预测未知数据。它更关注结果的准确性和模型的泛化能力,通常不关心模型是否可以解释。而统计学的目标是探究变量之间的关系,理解数据的内在结构和规律,以及确定这些关系的显著性。它更关注统计量服从什么分布、假设检验是否显著、模型拟合是否合理等问题。
  2. 方法:机器学习通常使用训练数据来训练模型,然后通过测试数据来评估模型的性能。在训练过程中,机器学习算法会自动调整模型的参数,以最小化预测错误。而统计学则更注重模型的构建和解释,通常使用统计方法(如回归、方差分析等)来推断变量之间的关系,并通过置信区间、显著性检验等方法来评估模型的合理性。

2、共同点:

  1. 数据驱动:机器学习和统计学都是以数据为基础的学科,都需要从数据中提取信息并进行推断。
  2. 模型建立:两者都需要建立模型来描述数据。机器学习中的模型通常是参数化的,而统计学中的模型可能是参数化或非参数化的。
  3. 预测和推断:机器学习和统计学都可以用于预测和推断。机器学习模型可以对新数据进行预测,而统计学模型可以用于推断变量之间的关系和预测未来趋势。
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
Mapmost2 小时前
【数据可视化艺术·实战篇】视频AI+人流可视化:如何让数据“动”起来?
人工智能·信息可视化·实时音视频·数字孪生·demo
_一条咸鱼_2 小时前
AI 大模型的 MCP 原理
人工智能·深度学习·面试
_一条咸鱼_2 小时前
AI 大模型 Function Calling 原理
人工智能·深度学习·面试
寰宇视讯3 小时前
金山科技在第91届中国国际医疗器械博览会CMEF 首发新品 展现智慧装备+AI
大数据·人工智能·科技
訾博ZiBo3 小时前
AI日报 - 2025年04月17日
人工智能
耿雨飞3 小时前
二、The Power of LLM Function Calling
人工智能·大模型
金能电力3 小时前
金能电力领跑京东工业安全工器具赛道 2025年首季度数据诠释“头部效应”
人工智能·安全·金能电力安全工器具
WSSWWWSSW3 小时前
神经网络如何表示数据
人工智能·深度学习·神经网络
多吃轻食4 小时前
Jieba分词的原理及应用(三)
人工智能·深度学习·自然语言处理·中文分词·分词·jieba·隐马尔可夫
dragon_perfect4 小时前
ubuntu22.04上设定Service程序自启动,自动运行Conda环境下的Python脚本(亲测)
开发语言·人工智能·python·conda