OLMo 以促进语言模型科学之名 —— OLMo Accelerating the Science of Language Models —— 全文翻译

OLMo: Accelerating the Science of Language Models
OLMo 以促进语言模型科学之名

摘要

语言模型在自然语言处理的研究中和商业产品中已经变得无所不在。因为其商业上的重要性激增,所以,其中最强大的模型已经闭源,控制在专有接口之中,保持特别是训练数据、架构和开发的重要的细节秘而不宣。 考虑到科学地研究这些模型的细节的重要性,包括他们的偏见和潜在风险,我们坚信能够把玩强大的、真正开源的语言模型,对于科学研究社区是非常重要的。为了这个目的,这份技术报告详述了 OLMo 的第一个发行版,这包括一个达到高水准的、真正开源的语言模型,和它构建和研究语言模型科学的的整个框架流程。不同于许多之前那些尝试,他们仅仅发布了模型的权重和推理代码,我们发布了OLMo,以及它的整个框架,这包括训练数据和训练与评估代码。我们希望这些发布将赋能开源研究社区并且激励一个新的创新浪潮。

Weights https://huggingface.co/allenai/OLMo-7B

Code https://github.com/allenai/OLMo

Data https://huggingface.co/datasets/allenai/dolma

Evaluation https://github.com/allenai/OLMo-Eval

Adaptation https://github.com/allenai/open-instruct

W&B Logs https://wandb.ai/ai2-llm/OLMo-7B/reports/OLMo-7B--Vmlldzo2NzQyMzk5

1. 引言

语言模型成为NLP技术的中心已经很多年了(Rosenfeld, 2000; Bengio et al., 2003; Mikolov et al., 2013; Peters et al., 2018; Brown et al., 2020)。最近,因为大规模的预训练和人类的对齐标注,它们已经成为了商业上的贵重物品 (OpenAI, 2023)。然而,随着它们的商业价值的已然增加,大模型已经控制在专有接口之中,而且大量重要细节也被秘而不宣。我们相信能够充分把玩开源语言模型,对于科学研究社区能够对这些模型做科学的研究、对它们的优点和弱点的研究、对它们的偏差和风险的研究,是非常重要的。据此,我们介绍了OLMo,一个达到高水准的、真正开源的语言模型和框架,用来构建、研究和促进语言模型,并且给出了训练数据、训练和评估的源代码,中间模型检查点、和训练日志。

未完待续 ... ...

相关推荐
许泽宇的技术分享几秒前
当 AI Agent 遇上 MCP:微软 Agent Framework 的“瑞士军刀“式扩展之道
人工智能·microsoft
沉迷单车的追风少年2 分钟前
Diffusion Model与视频超分(2):解读字节开源视频增强模型SeedVR2
人工智能·深度学习·aigc·音视频·强化学习·视频生成·视频超分
Victory_orsh21 分钟前
“自然搞懂”深度学习系列(基于Pytorch架构)——03渐入佳境
人工智能·pytorch·深度学习
Fuly102432 分钟前
AI 大模型应用中的图像,视频,音频的处理
人工智能·音视频
掘金安东尼42 分钟前
Cursor 2.0 转向多智能体 AI 编程,并发布 Composer 模型
人工智能
Small___ming42 分钟前
【人工智能数学基础】如何理解方差与协方差?
人工智能·概率论
好家伙VCC1 小时前
**发散创新:AI绘画编程探索与实践**随着人工智能技术的飞速发展,AI绘
java·人工智能·python·ai作画
兔兔爱学习兔兔爱学习1 小时前
2025年语音识别(ASR)与语音合成(TTS)技术趋势分析对比
人工智能·语音识别
中杯可乐多加冰1 小时前
服务编排搭建案例详解|基于smardaten实现协同办公平台复杂交互
人工智能·低代码
AndrewHZ1 小时前
【图像处理基石】图像匹配技术:从原理到实践,OpenCV实现与进阶方向
图像处理·人工智能·opencv·图像匹配·算法原理