OLMo 以促进语言模型科学之名 —— OLMo Accelerating the Science of Language Models —— 全文翻译

OLMo: Accelerating the Science of Language Models
OLMo 以促进语言模型科学之名

摘要

语言模型在自然语言处理的研究中和商业产品中已经变得无所不在。因为其商业上的重要性激增,所以,其中最强大的模型已经闭源,控制在专有接口之中,保持特别是训练数据、架构和开发的重要的细节秘而不宣。 考虑到科学地研究这些模型的细节的重要性,包括他们的偏见和潜在风险,我们坚信能够把玩强大的、真正开源的语言模型,对于科学研究社区是非常重要的。为了这个目的,这份技术报告详述了 OLMo 的第一个发行版,这包括一个达到高水准的、真正开源的语言模型,和它构建和研究语言模型科学的的整个框架流程。不同于许多之前那些尝试,他们仅仅发布了模型的权重和推理代码,我们发布了OLMo,以及它的整个框架,这包括训练数据和训练与评估代码。我们希望这些发布将赋能开源研究社区并且激励一个新的创新浪潮。

Weights https://huggingface.co/allenai/OLMo-7B

Code https://github.com/allenai/OLMo

Data https://huggingface.co/datasets/allenai/dolma

Evaluation https://github.com/allenai/OLMo-Eval

Adaptation https://github.com/allenai/open-instruct

W&B Logs https://wandb.ai/ai2-llm/OLMo-7B/reports/OLMo-7B--Vmlldzo2NzQyMzk5

1. 引言

语言模型成为NLP技术的中心已经很多年了(Rosenfeld, 2000; Bengio et al., 2003; Mikolov et al., 2013; Peters et al., 2018; Brown et al., 2020)。最近,因为大规模的预训练和人类的对齐标注,它们已经成为了商业上的贵重物品 (OpenAI, 2023)。然而,随着它们的商业价值的已然增加,大模型已经控制在专有接口之中,而且大量重要细节也被秘而不宣。我们相信能够充分把玩开源语言模型,对于科学研究社区能够对这些模型做科学的研究、对它们的优点和弱点的研究、对它们的偏差和风险的研究,是非常重要的。据此,我们介绍了OLMo,一个达到高水准的、真正开源的语言模型和框架,用来构建、研究和促进语言模型,并且给出了训练数据、训练和评估的源代码,中间模型检查点、和训练日志。

未完待续 ... ...

相关推荐
救救孩子把1 天前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
yzx9910131 天前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
只说证事1 天前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@1 天前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬1 天前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者1 天前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊1211 天前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者1 天前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能1 天前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
新智元1 天前
起猛了!这个国家任命 AI 为「部长」:全球首个,手握实权,招标 100% 透明
人工智能·openai