初识tensorflow程序设计模式

文章目录

github地址https://github.com/fz861062923/TensorFlow

建立'计算图'

python 复制代码
#建立'计算图'
import tensorflow as tf
x=tf.constant(2,name='x')#建立常量,有点像C
y=tf.Variable(x+5,name='y')#建立变量
python 复制代码
#执行'计算图'
with tf.Session() as sess:
    init=tf.global_variables_initializer()#初始化global变量
    sess.run(init)
    print('x=',sess.run(x))
    print('y=',sess.run(y))
复制代码
x= 2
y= 7
python 复制代码
x
复制代码
<tf.Tensor 'x:0' shape=() dtype=int32>

tensorflow placeholder

正如这个名字一样,hold on,hold on,告诉计算机等等在把值传给你,嘻嘻嘻嘻

python 复制代码
a=tf.placeholder('int32')
b=tf.placeholder('int32')
c=tf.multiply(a,b)
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print('c=',sess.run(c,feed_dict={a:6,b:7}))
复制代码
c= 42
tensorflow数值运算常用的方法
  • tf.add(x,y)
  • tf.subtract(x,y)#减法
  • tf.multiply(x,y)
  • tf.divide(x,y)
  • tf.mod(x,y)#余数
  • tf.sqrt(x,name=None)
  • tf.abs(x,name=None)

tensorboard

正如其名,可视化已经建立的计算图

python 复制代码
#承接上面的session
#下面代码将显示在tensorboard的数据写在log文件中
tf.summary.merge_all()#将显示在board的数据整合
train_writer=tf.summary.FileWriter('log/c',sess.graph)#写入log文件中
启动tensorboard的方法
  • activate tensorflow(虚拟环境名称)
  • tensorboard --logdir=c:\python\log\c
  • 用浏览器打开http://lacalhost:6006/

建立一维与二维张量

建立一维张量
python 复制代码
ts_x=tf.Variable([0.4,0.2,0.4])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[0.4 0.2 0.4]
python 复制代码
x.shape
复制代码
(3,)
建立二维张量
python 复制代码
ts_x=tf.Variable([[0.4,0.2,0.4]])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[[0.4 0.2 0.4]]
python 复制代码
x.shape
复制代码
(1, 3)
建立新的二维张量
python 复制代码
ts_x=tf.Variable([[0.4,0.2],
                 [0.3,0.4],
                 [-0.5,0.2]])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[[ 0.4  0.2]
 [ 0.3  0.4]
 [-0.5  0.2]]
python 复制代码
x.shape
复制代码
(3, 2)

矩阵的基本运算

矩阵的加法
python 复制代码
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],
              [-0.3,0.4],
              [0.5,0.6]])
xw=tf.matmul(x,w)

with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(xw))
复制代码
[[0.09999999 0.8       ]]
矩阵乘法与加法
python 复制代码
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],
              [-0.3,0.4],
              [0.5,0.6]])
b=tf.Variable([[0.1,0.2]])
xwb=tf.matmul(x,w)+b

with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(xwb))
复制代码
[[0.19999999 1.        ]]
相关推荐
-To be number.wan4 分钟前
Python数据分析:英国电商销售数据实战
开发语言·python·数据分析
木非哲6 分钟前
AB实验高级必修课(二):从宏观叙事到微观侦查,透视方差分析与回归的本质
人工智能·数据挖掘·回归·abtest
玩电脑的辣条哥6 分钟前
幽灵回复AI已回复但前端不显示的排查与修复
前端·人工智能
冬奇Lab7 分钟前
团队宪法:CLAUDE.md 和rule使用技巧与复利模式
人工智能·ai编程
细节处有神明7 分钟前
开源数据之历史气象数据的获取与使用
人工智能·python·算法
cxr82814 分钟前
思维的相变:规模如何通过“结晶”重塑大语言模型的推理几何?
人工智能·语言模型·自然语言处理
【赫兹威客】浩哥15 分钟前
基于 YOLO 多版本模型的路面缺陷识别实践与分析
人工智能·计算机视觉·目标跟踪
小白开始进步15 分钟前
JAKA Zu12 机械臂运动学算法深度解析(含可视化方案)
python·算法·numpy
SEO_juper17 分钟前
AI内容优化的2026实战路径:从策略、工具到案例
人工智能·ai·工具
无忧智库21 分钟前
全域未来乡村数字化建设与共富运营规划方案深度解读:打造数字乡村“中国样本“的完整方法论(PPT)
大数据·人工智能