初识tensorflow程序设计模式

文章目录

github地址https://github.com/fz861062923/TensorFlow

建立'计算图'

python 复制代码
#建立'计算图'
import tensorflow as tf
x=tf.constant(2,name='x')#建立常量,有点像C
y=tf.Variable(x+5,name='y')#建立变量
python 复制代码
#执行'计算图'
with tf.Session() as sess:
    init=tf.global_variables_initializer()#初始化global变量
    sess.run(init)
    print('x=',sess.run(x))
    print('y=',sess.run(y))
复制代码
x= 2
y= 7
python 复制代码
x
复制代码
<tf.Tensor 'x:0' shape=() dtype=int32>

tensorflow placeholder

正如这个名字一样,hold on,hold on,告诉计算机等等在把值传给你,嘻嘻嘻嘻

python 复制代码
a=tf.placeholder('int32')
b=tf.placeholder('int32')
c=tf.multiply(a,b)
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print('c=',sess.run(c,feed_dict={a:6,b:7}))
复制代码
c= 42
tensorflow数值运算常用的方法
  • tf.add(x,y)
  • tf.subtract(x,y)#减法
  • tf.multiply(x,y)
  • tf.divide(x,y)
  • tf.mod(x,y)#余数
  • tf.sqrt(x,name=None)
  • tf.abs(x,name=None)

tensorboard

正如其名,可视化已经建立的计算图

python 复制代码
#承接上面的session
#下面代码将显示在tensorboard的数据写在log文件中
tf.summary.merge_all()#将显示在board的数据整合
train_writer=tf.summary.FileWriter('log/c',sess.graph)#写入log文件中
启动tensorboard的方法
  • activate tensorflow(虚拟环境名称)
  • tensorboard --logdir=c:\python\log\c
  • 用浏览器打开http://lacalhost:6006/

建立一维与二维张量

建立一维张量
python 复制代码
ts_x=tf.Variable([0.4,0.2,0.4])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[0.4 0.2 0.4]
python 复制代码
x.shape
复制代码
(3,)
建立二维张量
python 复制代码
ts_x=tf.Variable([[0.4,0.2,0.4]])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[[0.4 0.2 0.4]]
python 复制代码
x.shape
复制代码
(1, 3)
建立新的二维张量
python 复制代码
ts_x=tf.Variable([[0.4,0.2],
                 [0.3,0.4],
                 [-0.5,0.2]])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[[ 0.4  0.2]
 [ 0.3  0.4]
 [-0.5  0.2]]
python 复制代码
x.shape
复制代码
(3, 2)

矩阵的基本运算

矩阵的加法
python 复制代码
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],
              [-0.3,0.4],
              [0.5,0.6]])
xw=tf.matmul(x,w)

with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(xw))
复制代码
[[0.09999999 0.8       ]]
矩阵乘法与加法
python 复制代码
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],
              [-0.3,0.4],
              [0.5,0.6]])
b=tf.Variable([[0.1,0.2]])
xwb=tf.matmul(x,w)+b

with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(xwb))
复制代码
[[0.19999999 1.        ]]
相关推荐
学术小八1 小时前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr
nbsaas-boot2 小时前
Java 正则表达式白皮书:语法详解、工程实践与常用表达式库
开发语言·python·mysql
仗剑_走天涯2 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
chao_7892 小时前
二分查找篇——搜索旋转排序数组【LeetCode】两次二分查找
开发语言·数据结构·python·算法·leetcode
cnbestec3 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl3 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji4 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头5 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域6 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊6 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor