初识tensorflow程序设计模式

文章目录

github地址https://github.com/fz861062923/TensorFlow

建立'计算图'

python 复制代码
#建立'计算图'
import tensorflow as tf
x=tf.constant(2,name='x')#建立常量,有点像C
y=tf.Variable(x+5,name='y')#建立变量
python 复制代码
#执行'计算图'
with tf.Session() as sess:
    init=tf.global_variables_initializer()#初始化global变量
    sess.run(init)
    print('x=',sess.run(x))
    print('y=',sess.run(y))
复制代码
x= 2
y= 7
python 复制代码
x
复制代码
<tf.Tensor 'x:0' shape=() dtype=int32>

tensorflow placeholder

正如这个名字一样,hold on,hold on,告诉计算机等等在把值传给你,嘻嘻嘻嘻

python 复制代码
a=tf.placeholder('int32')
b=tf.placeholder('int32')
c=tf.multiply(a,b)
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print('c=',sess.run(c,feed_dict={a:6,b:7}))
复制代码
c= 42
tensorflow数值运算常用的方法
  • tf.add(x,y)
  • tf.subtract(x,y)#减法
  • tf.multiply(x,y)
  • tf.divide(x,y)
  • tf.mod(x,y)#余数
  • tf.sqrt(x,name=None)
  • tf.abs(x,name=None)

tensorboard

正如其名,可视化已经建立的计算图

python 复制代码
#承接上面的session
#下面代码将显示在tensorboard的数据写在log文件中
tf.summary.merge_all()#将显示在board的数据整合
train_writer=tf.summary.FileWriter('log/c',sess.graph)#写入log文件中
启动tensorboard的方法
  • activate tensorflow(虚拟环境名称)
  • tensorboard --logdir=c:\python\log\c
  • 用浏览器打开http://lacalhost:6006/

建立一维与二维张量

建立一维张量
python 复制代码
ts_x=tf.Variable([0.4,0.2,0.4])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[0.4 0.2 0.4]
python 复制代码
x.shape
复制代码
(3,)
建立二维张量
python 复制代码
ts_x=tf.Variable([[0.4,0.2,0.4]])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[[0.4 0.2 0.4]]
python 复制代码
x.shape
复制代码
(1, 3)
建立新的二维张量
python 复制代码
ts_x=tf.Variable([[0.4,0.2],
                 [0.3,0.4],
                 [-0.5,0.2]])
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    x=sess.run(ts_x)
    print(x)
复制代码
[[ 0.4  0.2]
 [ 0.3  0.4]
 [-0.5  0.2]]
python 复制代码
x.shape
复制代码
(3, 2)

矩阵的基本运算

矩阵的加法
python 复制代码
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],
              [-0.3,0.4],
              [0.5,0.6]])
xw=tf.matmul(x,w)

with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(xw))
复制代码
[[0.09999999 0.8       ]]
矩阵乘法与加法
python 复制代码
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],
              [-0.3,0.4],
              [0.5,0.6]])
b=tf.Variable([[0.1,0.2]])
xwb=tf.matmul(x,w)+b

with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(xwb))
复制代码
[[0.19999999 1.        ]]
相关推荐
掘金安东尼6 分钟前
被权重出卖的“脏数据”:GPT-oss 揭开的 OpenAI 中文训练真相
人工智能
十重幻想17 分钟前
reshape的共享内存
python
Orange_sparkle17 分钟前
关于dify中http节点下载文件时,文件名不为原始文件名问题解决
人工智能·http·chatgpt·dify
Juchecar25 分钟前
设计模式不是Java专属,其他语言的使用方法
java·python·设计模式
王哈哈^_^25 分钟前
【完整源码+数据集】蓝莓数据集,yolo11蓝莓成熟度检测数据集 3023 张,蓝莓成熟度数据集,目标检测蓝莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·ai·视觉检测
盘古开天166631 分钟前
通俗易懂:YOLO模型原理详解,从零开始理解目标检测
人工智能·yolo·目标检测
OpenBuild.xyz32 分钟前
x402 生态系统:Web3 与 AI 融合的支付新基建
人工智能·web3
王哈哈^_^38 分钟前
【完整源码+数据集】高空作业数据集,yolo高空作业检测数据集 2076 张,人员高空作业数据集,目标检测高空作业识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪·视觉检测
猿小猴子41 分钟前
主流 AI IDE 之一的 Comate IDE 介绍
ide·人工智能·comate
scala舔狗汪43 分钟前
双层跳动爱心❤️❤️💕💕
python