读TiDB源码聊设计:浅析HTAP的SQL优化器

版本 日期 备注
1.0 2024.2.18 文章首发

本文的的源码分析全部基于TiDB6.5来做分析。

1.引子

如果让你做一个分布式数据库的优化器,面对以下的SQL,你会想到什么好的方法去执行他们呢?

  • SELECT id, name FROM person WHERE age >= 18 or height > 180 limit 100;:从条件上看,我们看到条件其实是二选一的: age >= 18 or height > 180。基于这种情况,我们肯定会去选择有索引的数据,如果都有索引or都没有,那么肯定选择扫描行数最少的数据。如果有一些算子在里面的话,则额外需要考虑数据的就近原则------有些算子在部分架构下可以充分利用MPP的能力,而有些则不行。
  • SELECT orders.order_id, customers.customer_name, orders.order_date FROM orders LEFT JOIN customers ON orders.customer_id=customers.customer_id;分布式数据库中的join,最优的方式就是小表广播到大表数据所在的地方。那么首先我们得知道谁是小表,谁是大表。

2.统计信息收集

根据前面的两个例子,我们可以发现------如果我们需要找到SQL对应的最佳计划,我们会需要一些表的元数据,或者说是统计信息。从常规的角度来说,以下统计信息是必须收集的:

  • 表的总行数
  • 每列数据的平均大小
  • 每列数据的基数:即NDV(distinct value)
  • 列的NULL值个数

如果是事务型的(行式存储),那么还要考虑索引平均长度、值的分布等等。

如果是分析型的(列式存储),那么还需要考虑相关列的最大值、最小值等等。

而统计方式的收集,会有多种方式。主要是考虑资源和准确性之间的Trade off。常见的有:

  • TopN:相关数据出现次数前 n 的值。
  • 直方图:用于描述数据分布图的工具。按照数据的值大小进行分桶,并用一些简单的数据来描述每个桶,比如落在桶里的值的个数。
  • 2D直方图:由于直方图无法反应列之间的关联,可以用2D直方图(联合分布)做到,但空间占用也比较多。
  • Count-Min Sketch:类似哈希表加上计算器的实现。可以用很少的数据来描述全体数据的特性。
  • HyperLogLog:一种估算海量数据基数的方法。很多情况下,统计并不需要那么精确。工程方面要在使用资源和准确性里找平衡。因此有人提出用HLL,这是一种占用资源少,但能给出较为准确的近似结果的算法。

TiDB收集的统计信息见:docs.pingcap.com/zh/tidb/v6....

3.代价的评估

一个SQL真正的物理执行计划可能是有多个的。在以统计信息为基础之上,我们还需要加入相应的权重,举个例子:

  1. 如果能够在内存中计算完成,就不用去反复发起本地IO
  2. 如果能在本地IO中完成,就不要去发起网络请求

等等...

这在TiDB的代码中也有对应的默认值。

go 复制代码
DefOptCPUFactor                                = 3.0
DefOptCopCPUFactor                             = 3.0
DefOptTiFlashConcurrencyFactor                 = 24.0
DefOptNetworkFactor                            = 1.0
DefOptScanFactor                               = 1.5
DefOptDescScanFactor                           = 3.0
DefOptSeekFactor                               = 20.0
DefOptMemoryFactor                             = 0.001
DefOptDiskFactor                               = 1.5
DefOptConcurrencyFactor                        = 3.0
go 复制代码
var defaultVer2Factors = costVer2Factors{
	TiDBTemp:      costVer2Factor{"tidb_temp_table_factor", 0.00},
	TiKVScan:      costVer2Factor{"tikv_scan_factor", 40.70},
	TiKVDescScan:  costVer2Factor{"tikv_desc_scan_factor", 61.05},
	TiFlashScan:   costVer2Factor{"tiflash_scan_factor", 11.60},
	TiDBCPU:       costVer2Factor{"tidb_cpu_factor", 49.90},
	TiKVCPU:       costVer2Factor{"tikv_cpu_factor", 49.90},
	TiFlashCPU:    costVer2Factor{"tiflash_cpu_factor", 2.40},
	TiDB2KVNet:    costVer2Factor{"tidb_kv_net_factor", 3.96},
	TiDB2FlashNet: costVer2Factor{"tidb_flash_net_factor", 2.20},
	TiFlashMPPNet: costVer2Factor{"tiflash_mpp_net_factor", 1.00},
	TiDBMem:       costVer2Factor{"tidb_mem_factor", 0.20},
	TiKVMem:       costVer2Factor{"tikv_mem_factor", 0.20},
	TiFlashMem:    costVer2Factor{"tiflash_mem_factor", 0.05},
	TiDBDisk:      costVer2Factor{"tidb_disk_factor", 200.00},
	TiDBRequest:   costVer2Factor{"tidb_request_factor", 6000000.00},
}

4.执行计划枚举与择优

当我们可以评估出物理执行计划的代价时,将会枚举所有可以用上物理执行计划,并在其中选择代价最小的物理执行计划。一般枚举分为两个流派:

  1. 自底向上:代表有System R。
  2. 自顶向下:代表有Cascade。

自底向上没法解决一个问题。当上层对下层的输出结果顺序感兴趣时,那就不能只能从底层的视角来寻找局部最优。

举个例子,多表Join。一开始两个表Join可能HashJoin代价很低,但是Join下一个表时,用MergeJoin从整体来看代价更低。从这个case来看,自底向上来做计划取优并不合适。

所以有了Cascade:

  1. 搜索方案是自顶向下的。这意味着它可以避免局部最优而导致全局不优。从Operator Tree 自顶向下遍历时,可以做一系列变换:
    • Implementation:逻辑算子可以转换成物理算子;例如Join转换成NestLoop或者HashJoin等
    • Exploration:逻辑算子可以做等价变换;例如交换Inner Join的两个子节点,即可枚举Join顺序

图片来自于:Cascades Optimizer------zhuanlan.zhihu.com/p/73545345

  1. 它是基于Volcano模型演进而来的。
  2. 用面向对象的方式进行建模,编写规则时不需要关心搜索过程。相比传统优化器中面向过程去一条条的编写,的确是很大的改进。

5.TiDB的实现

大致的代码调用链为:

log 复制代码
-- session/session.go

\-- ExecuteStmt //SQL执行的入口

|-- executor/compiler.go

\-- Compile //将SQL变成可执行的计划

|--planner/planner/optmize.go

\-- Optimize //优化的入口

\-- optimize //这里有两个入口。一种是新的优化器入口,一种是老的优化器入口。根据配置来选择。最终都会返回最优的物理执行计划。

    |-- planner/cascades/optmize.go

        \--FindBestPlan 见5.1
    
        \-- onPhasePreprocessing //见5.3

        \-- implGroup

        |--planner/core/optmizer.go //见5.4

            \-- DoOptimize

            \-- physicalOptimize

            |--planner/core/find_best_task.go

            \-- findBestTask

            \-- enumeratePhysicalPlans4Task

            \-- compareTaskCost
    
            \-- getTaskPlanCost
    
            |-- planner/core/plan_cost_ver2.go

            \-- getPlanCost

5.1 逻辑优化

核心入口为:

go 复制代码
// FindBestPlan is the optimization entrance of the cascades planner. The
// optimization is composed of 3 phases: preprocessing, exploration and implementation.
//
// ------------------------------------------------------------------------------
// Phase 1: Preprocessing
// ------------------------------------------------------------------------------
//
// The target of this phase is to preprocess the plan tree by some heuristic
// rules which should always be beneficial, for example Column Pruning.
//
// ------------------------------------------------------------------------------
// Phase 2: Exploration
// ------------------------------------------------------------------------------
//
// The target of this phase is to explore all the logically equivalent
// expressions by exploring all the equivalent group expressions of each group.
//
// At the very beginning, there is only one group expression in a Group. After
// applying some transformation rules on certain expressions of the Group, all
// the equivalent expressions are found and stored in the Group. This procedure
// can be regarded as searching for a weak connected component in a directed
// graph, where nodes are expressions and directed edges are the transformation
// rules.
//
// ------------------------------------------------------------------------------
// Phase 3: Implementation
// ------------------------------------------------------------------------------
//
// The target of this phase is to search the best physical plan for a Group
// which satisfies a certain required physical property.
//
// In this phase, we need to enumerate all the applicable implementation rules
// for each expression in each group under the required physical property. A
// memo structure is used for a group to reduce the repeated search on the same
// required physical property.
func (opt *Optimizer) FindBestPlan(sctx sessionctx.Context, logical plannercore.LogicalPlan) (p plannercore.PhysicalPlan, cost float64, err error) {
	logical, err = opt.onPhasePreprocessing(sctx, logical)
	if err != nil {
		return nil, 0, err
	}
	rootGroup := memo.Convert2Group(logical)
	err = opt.onPhaseExploration(sctx, rootGroup)
	if err != nil {
		return nil, 0, err
	}
	p, cost, err = opt.onPhaseImplementation(sctx, rootGroup)
	if err != nil {
		return nil, 0, err
	}
	err = p.ResolveIndices()
	return p, cost, err
}

注释+代码很干净,这里一共做三件事

  1. onPhasePreprocessing:注释很实在,说for example Column Pruning,结果里面真的只做了列裁剪。
  2. onPhaseExploration:探索所有逻辑等价存在的可能
  3. onPhaseImplementation:根据代价寻找最优的物理执行计划

这块官网的博客写的非常好,我就不重复了:cn.pingcap.com/blog/tidb-c...

5.2 统计信息收集

这块代码主要集中在stats.go里,里面的核心数据结构是stats_info.go里的StatsInfo。调用链大致为:

log 复制代码
|-- planner/cascades/optimizer.go

\--fillGroupStats

|-- planner/core/stats.go

\--DeriveStats
go 复制代码
type LogicalPlan interface {
	Plan
    //......忽略一些代码
	// DeriveStats derives statistic info for current plan node given child stats.
	// We need selfSchema, childSchema here because it makes this method can be used in
	// cascades planner, where LogicalPlan might not record its children or schema.
	DeriveStats(childStats []*property.StatsInfo, selfSchema *expression.Schema, childSchema []*expression.Schema, colGroups [][]*expression.Column) (*property.StatsInfo, error)
    //......忽略一些代码
}

有很多结构体实现了这个方法:

  1. 收集统计信息主要是analyze.go#Next方法中调用的#analyzeWorker。

5.3 新版本 物理执行计划的选择

代码入口为:

go 复制代码
// implGroup finds the best Implementation which satisfies the required
// physical property for a Group. The best Implementation should have the
// lowest cost among all the applicable Implementations.
//
// g:			the Group to be implemented.
// reqPhysProp: the required physical property.
// costLimit:   the maximum cost of all the Implementations.
func (opt *Optimizer) implGroup(g *memo.Group, reqPhysProp *property.PhysicalProperty, costLimit float64) (memo.Implementation, error) {
	groupImpl := g.GetImpl(reqPhysProp)
	if groupImpl != nil {
		if groupImpl.GetCost() <= costLimit {
			return groupImpl, nil
		}
		return nil, nil
	}
	// Handle implementation rules for each equivalent GroupExpr.
	var childImpls []memo.Implementation
	err := opt.fillGroupStats(g)
	if err != nil {
		return nil, err
	}
	outCount := math.Min(g.Prop.Stats.RowCount, reqPhysProp.ExpectedCnt)
	for elem := g.Equivalents.Front(); elem != nil; elem = elem.Next() {
		curExpr := elem.Value.(*memo.GroupExpr)
		impls, err := opt.implGroupExpr(curExpr, reqPhysProp)
		if err != nil {
			return nil, err
		}
		for _, impl := range impls {
			childImpls = childImpls[:0]
			for i, childGroup := range curExpr.Children {
				childImpl, err := opt.implGroup(childGroup, impl.GetPlan().GetChildReqProps(i), impl.GetCostLimit(costLimit, childImpls...))
				if err != nil {
					return nil, err
				}
				if childImpl == nil {
					impl.SetCost(math.MaxFloat64)
					break
				}
				childImpls = append(childImpls, childImpl)
			}
			if impl.GetCost() == math.MaxFloat64 {
				continue
			}
			implCost := impl.CalcCost(outCount, childImpls...)
			if implCost > costLimit {
				continue
			}
			if groupImpl == nil || groupImpl.GetCost() > implCost {
				groupImpl = impl.AttachChildren(childImpls...)
				costLimit = implCost
			}
		}
	}
	// Handle enforcer rules for required physical property.
	for _, rule := range GetEnforcerRules(g, reqPhysProp) {
		newReqPhysProp := rule.NewProperty(reqPhysProp)
		enforceCost := rule.GetEnforceCost(g)
		childImpl, err := opt.implGroup(g, newReqPhysProp, costLimit-enforceCost)
		if err != nil {
			return nil, err
		}
		if childImpl == nil {
			continue
		}
		impl := rule.OnEnforce(reqPhysProp, childImpl)
		implCost := enforceCost + childImpl.GetCost()
		impl.SetCost(implCost)
		if groupImpl == nil || groupImpl.GetCost() > implCost {
			groupImpl = impl
			costLimit = implCost
		}
	}
	if groupImpl == nil || groupImpl.GetCost() == math.MaxFloat64 {
		return nil, nil
	}
	g.InsertImpl(reqPhysProp, groupImpl)
	return groupImpl, nil
}

这里个函数会找出潜在符合条件的物理执行计划,并不断的搜索。但它有一个剪枝逻辑------会记录当前最小的cost,如果一个执行计划自上向下搜索时,如果超过了这个cost,则直接返回。这就是在第3节提到的自顶向下的优化。

接下来我们看一下memo.Implementation的定义:

go 复制代码
package memo

import (
	plannercore "github.com/pingcap/tidb/planner/core"
)

// Implementation defines the interface for cost of physical plan.
type Implementation interface {
	CalcCost(outCount float64, children ...Implementation) float64
	SetCost(cost float64)
	GetCost() float64
	GetPlan() plannercore.PhysicalPlan

	// AttachChildren is used to attach children implementations and returns it self.
	AttachChildren(children ...Implementation) Implementation

	// GetCostLimit gets the costLimit for implementing the next childGroup.
	GetCostLimit(costLimit float64, children ...Implementation) float64
}

其中CalcCost方法就是用来计算物理执行计划的代价。一共有这么多结构体实现了它:

5.3.1 代价的评估

我们以开头的例子,讲解代价的评估。

select代价计算方式

go 复制代码
// CalcCost calculates the cost of the table scan Implementation.
func (impl *TableScanImpl) CalcCost(outCount float64, _ ...memo.Implementation) float64 {
	ts := impl.plan.(*plannercore.PhysicalTableScan)
	width := impl.tblColHists.GetTableAvgRowSize(impl.plan.SCtx(), impl.tblCols, kv.TiKV, true)
	sessVars := ts.SCtx().GetSessionVars()
	impl.cost = outCount * sessVars.GetScanFactor(ts.Table) * width
	if ts.Desc {
		impl.cost = outCount * sessVars.GetDescScanFactor(ts.Table) * width
	}
	return impl.cost
}

// GetScanFactor returns the session variable scanFactor
// returns 0 when tbl is a temporary table.
func (s *SessionVars) GetScanFactor(tbl *model.TableInfo) float64 {
	if tbl != nil {
		if tbl.TempTableType != model.TempTableNone {
			return 0
		}
	}
	return s.scanFactor 
}


// CalcCost implements Implementation interface.
func (impl *IndexScanImpl) CalcCost(outCount float64, _ ...memo.Implementation) float64 {
	is := impl.plan.(*plannercore.PhysicalIndexScan)
	sessVars := is.SCtx().GetSessionVars()
	rowSize := impl.tblColHists.GetIndexAvgRowSize(is.SCtx(), is.Schema().Columns, is.Index.Unique)
	cost := outCount * rowSize * sessVars.GetScanFactor(is.Table)
	if is.Desc {
		cost = outCount * rowSize * sessVars.GetDescScanFactor(is.Table)
	}
	cost += float64(len(is.Ranges)) * sessVars.GetSeekFactor(is.Table)
	impl.cost = cost
	return impl.cost
}

这里我们以全表扫描表和命中索引的代码为例子。其中默认的scanFactor是1.5。这里可以看到indexScan和tableScan少了一个因数:width。这个变量代表了所需列的平均大小。这么看基本上是indexScan最优了。

这里的代码笔者认为有点不优雅------当Desc时,其实之前的Cost是没必要算一遍的,浪费CPU资源。

join代价计算方式

go 复制代码
// CalcCost implements Implementation CalcCost interface.
func (impl *HashJoinImpl) CalcCost(_ float64, children ...memo.Implementation) float64 {
	hashJoin := impl.plan.(*plannercore.PhysicalHashJoin)
	// The children here are only used to calculate the cost.
	hashJoin.SetChildren(children[0].GetPlan(), children[1].GetPlan())
	selfCost := hashJoin.GetCost(children[0].GetPlan().StatsCount(), children[1].GetPlan().StatsCount(), false, 0, nil)
	impl.cost = selfCost + children[0].GetCost() + children[1].GetCost()
	return impl.cost
}

// CalcCost implements Implementation CalcCost interface.
func (impl *MergeJoinImpl) CalcCost(_ float64, children ...memo.Implementation) float64 {
	mergeJoin := impl.plan.(*plannercore.PhysicalMergeJoin)
	// The children here are only used to calculate the cost.
	mergeJoin.SetChildren(children[0].GetPlan(), children[1].GetPlan())
	selfCost := mergeJoin.GetCost(children[0].GetPlan().StatsCount(), children[1].GetPlan().StatsCount(), 0)
	impl.cost = selfCost + children[0].GetCost() + children[1].GetCost()
	return impl.cost
}

具体的计算都在plan_cost_v1.go里:

go 复制代码
// GetCost computes cost of hash join operator itself.
func (p *PhysicalHashJoin) GetCost(lCnt, rCnt float64, isMPP bool, costFlag uint64, op *physicalOptimizeOp) float64 {
	buildCnt, probeCnt := lCnt, rCnt
	build := p.children[0]
	// Taking the right as the inner for right join or using the outer to build a hash table.
	if (p.InnerChildIdx == 1 && !p.UseOuterToBuild) || (p.InnerChildIdx == 0 && p.UseOuterToBuild) {
		buildCnt, probeCnt = rCnt, lCnt
		build = p.children[1]
	}
	sessVars := p.ctx.GetSessionVars()
	oomUseTmpStorage := variable.EnableTmpStorageOnOOM.Load()
	memQuota := sessVars.MemTracker.GetBytesLimit() // sessVars.MemQuotaQuery && hint
	rowSize := getAvgRowSize(build.statsInfo(), build.Schema().Columns)
	spill := oomUseTmpStorage && memQuota > 0 && rowSize*buildCnt > float64(memQuota) && p.storeTp != kv.TiFlash
	// Cost of building hash table.
	cpuFactor := sessVars.GetCPUFactor()
	diskFactor := sessVars.GetDiskFactor()
	memoryFactor := sessVars.GetMemoryFactor()
	concurrencyFactor := sessVars.GetConcurrencyFactor()

	cpuCost := buildCnt * cpuFactor
	memoryCost := buildCnt * memoryFactor
	diskCost := buildCnt * diskFactor * rowSize
	// Number of matched row pairs regarding the equal join conditions.
	helper := &fullJoinRowCountHelper{
		sctx:            p.SCtx(),
		cartesian:       false,
		leftProfile:     p.children[0].statsInfo(),
		rightProfile:    p.children[1].statsInfo(),
		leftJoinKeys:    p.LeftJoinKeys,
		rightJoinKeys:   p.RightJoinKeys,
		leftSchema:      p.children[0].Schema(),
		rightSchema:     p.children[1].Schema(),
		leftNAJoinKeys:  p.LeftNAJoinKeys,
		rightNAJoinKeys: p.RightNAJoinKeys,
	}
	numPairs := helper.estimate()
	// For semi-join class, if `OtherConditions` is empty, we already know
	// the join results after querying hash table, otherwise, we have to
	// evaluate those resulted row pairs after querying hash table; if we
	// find one pair satisfying the `OtherConditions`, we then know the
	// join result for this given outer row, otherwise we have to iterate
	// to the end of those pairs; since we have no idea about when we can
	// terminate the iteration, we assume that we need to iterate half of
	// those pairs in average.
	if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin ||
		p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
		if len(p.OtherConditions) > 0 {
			numPairs *= 0.5
		} else {
			numPairs = 0
		}
	}
	if hasCostFlag(costFlag, CostFlagUseTrueCardinality) {
		numPairs = getOperatorActRows(p)
	}
	// Cost of querying hash table is cheap actually, so we just compute the cost of
	// evaluating `OtherConditions` and joining row pairs.
	probeCost := numPairs * cpuFactor
	probeDiskCost := numPairs * diskFactor * rowSize
	// Cost of evaluating outer filter.
	if len(p.LeftConditions)+len(p.RightConditions) > 0 {
		// Input outer count for the above compution should be adjusted by SelectionFactor.
		probeCost *= SelectionFactor
		probeDiskCost *= SelectionFactor
		probeCost += probeCnt * cpuFactor
	}
	diskCost += probeDiskCost
	probeCost /= float64(p.Concurrency)
	// Cost of additional concurrent goroutines.
	cpuCost += probeCost + float64(p.Concurrency+1)*concurrencyFactor
	// Cost of traveling the hash table to resolve missing matched cases when building the hash table from the outer table
	if p.UseOuterToBuild {
		if spill {
			// It runs in sequence when build data is on disk. See handleUnmatchedRowsFromHashTableInDisk
			cpuCost += buildCnt * cpuFactor
		} else {
			cpuCost += buildCnt * cpuFactor / float64(p.Concurrency)
		}
		diskCost += buildCnt * diskFactor * rowSize
	}

	if spill {
		memoryCost *= float64(memQuota) / (rowSize * buildCnt)
	} else {
		diskCost = 0
	}
	if op != nil {
		setPhysicalHashJoinCostDetail(p, op, spill, buildCnt, probeCnt, cpuFactor, rowSize, numPairs,
			cpuCost, probeCost, memoryCost, diskCost, probeDiskCost,
			diskFactor, memoryFactor, concurrencyFactor,
			memQuota)
	}
	return cpuCost + memoryCost + diskCost
}


// GetCost computes cost of merge join operator itself.
func (p *PhysicalMergeJoin) GetCost(lCnt, rCnt float64, costFlag uint64) float64 {
	outerCnt := lCnt
	innerCnt := rCnt
	innerKeys := p.RightJoinKeys
	innerSchema := p.children[1].Schema()
	innerStats := p.children[1].statsInfo()
	if p.JoinType == RightOuterJoin {
		outerCnt = rCnt
		innerCnt = lCnt
		innerKeys = p.LeftJoinKeys
		innerSchema = p.children[0].Schema()
		innerStats = p.children[0].statsInfo()
	}
	helper := &fullJoinRowCountHelper{
		sctx:          p.SCtx(),
		cartesian:     false,
		leftProfile:   p.children[0].statsInfo(),
		rightProfile:  p.children[1].statsInfo(),
		leftJoinKeys:  p.LeftJoinKeys,
		rightJoinKeys: p.RightJoinKeys,
		leftSchema:    p.children[0].Schema(),
		rightSchema:   p.children[1].Schema(),
	}
	numPairs := helper.estimate()
	if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin ||
		p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
		if len(p.OtherConditions) > 0 {
			numPairs *= 0.5
		} else {
			numPairs = 0
		}
	}
	if hasCostFlag(costFlag, CostFlagUseTrueCardinality) {
		numPairs = getOperatorActRows(p)
	}
	sessVars := p.ctx.GetSessionVars()
	probeCost := numPairs * sessVars.GetCPUFactor()
	// Cost of evaluating outer filters.
	var cpuCost float64
	if len(p.LeftConditions)+len(p.RightConditions) > 0 {
		probeCost *= SelectionFactor
		cpuCost += outerCnt * sessVars.GetCPUFactor()
	}
	cpuCost += probeCost
	// For merge join, only one group of rows with same join key(not null) are cached,
	// we compute average memory cost using estimated group size.
	NDV, _ := getColsNDVWithMatchedLen(innerKeys, innerSchema, innerStats)
	memoryCost := (innerCnt / NDV) * sessVars.GetMemoryFactor()
	return cpuCost + memoryCost
}

HashJoin要考虑到内存不够的情况,因此在计算到数据不够时,会将对应的数据压入硬盘。但它对数据的顺序并无要求,因此可以并发的去做。见:

go 复制代码
	// Cost of traveling the hash table to resolve missing matched cases when building the hash table from the outer table
	if p.UseOuterToBuild {
		if spill {
			// It runs in sequence when build data is on disk. See handleUnmatchedRowsFromHashTableInDisk
			cpuCost += buildCnt * cpuFactor
		} else {
			cpuCost += buildCnt * cpuFactor / float64(p.Concurrency)
		}
		diskCost += buildCnt * diskFactor * rowSize
	}

而MergeJoin的代价显然会更小,但能够选则到这个计划也有较高的要求:当两个关联表要 Join 的字段需要按排好的顺序读取时,适用 Merge Join 算法。

5.4 老版本 物理执行计划的选择

5.4.1 代价的评估

这块代码主要是在plan_cost_ver1.goplan_cost_ver2.go。v2对代价公式进行了更精确的回归校准,调整了部分代价公式,比此前版本的代价公式更加准确。代码上也更为简洁:v2只暴露出了一个公共方法,内部通过不同的类型做转发。

go 复制代码
// GetPlanCost returns the cost of this plan.
func GetPlanCost(p PhysicalPlan, taskType property.TaskType, option *PlanCostOption) (float64, error) {
	return getPlanCost(p, taskType, option)
}

func getPlanCost(p PhysicalPlan, taskType property.TaskType, option *PlanCostOption) (float64, error) {
	if p.SCtx().GetSessionVars().CostModelVersion == modelVer2 {
		planCost, err := p.getPlanCostVer2(taskType, option)
		return planCost.cost, err
	}
	return p.getPlanCostVer1(taskType, option)
}

根据不同的PhysicalPlan类型,会找到不同绑定方法:

v1的部分方法展示:

select代价计算方式

go 复制代码
// getPlanCostVer2 returns the plan-cost of this sub-plan, which is:
// plan-cost = child-cost + filter-cost
func (p *PhysicalSelection) getPlanCostVer2(taskType property.TaskType, option *PlanCostOption) (costVer2, error) {
	if p.planCostInit && !hasCostFlag(option.CostFlag, CostFlagRecalculate) {
		return p.planCostVer2, nil
	}

	inputRows := getCardinality(p.children[0], option.CostFlag)
	cpuFactor := getTaskCPUFactorVer2(p, taskType)

	filterCost := filterCostVer2(option, inputRows, p.Conditions, cpuFactor)

	childCost, err := p.children[0].getPlanCostVer2(taskType, option)
	if err != nil {
		return zeroCostVer2, err
	}

	p.planCostVer2 = sumCostVer2(filterCost, childCost)
	p.planCostInit = true
	return p.planCostVer2, nil
}

这部分代码简单易读。代价就是子查询的代价+筛选的代价。

那么问题来了,中索引的和不中索引的代价应该是不一样的。这里没有体现出来啊。仔细看childCost, err := p.children[0].getPlanCostVer2(taskType, option),这里是会去获取子物理执行计划的代价。

go 复制代码
// getPlanCostVer2 returns the plan-cost of this sub-plan, which is:
func (p *PointGetPlan) getPlanCostVer2(taskType property.TaskType, option *PlanCostOption) (costVer2, error) {
	if p.planCostInit && !hasCostFlag(option.CostFlag, CostFlagRecalculate) {
		return p.planCostVer2, nil
	}

	if p.accessCols == nil { // from fast plan code path
		p.planCostVer2 = zeroCostVer2
		p.planCostInit = true
		return zeroCostVer2, nil
	}
	rowSize := getAvgRowSize(p.stats, p.schema.Columns)
	netFactor := getTaskNetFactorVer2(p, taskType)

	p.planCostVer2 = netCostVer2(option, 1, rowSize, netFactor)
	p.planCostInit = true
	return p.planCostVer2, nil
}

func netCostVer2(option *PlanCostOption, rows, rowSize float64, netFactor costVer2Factor) costVer2 {
	return newCostVer2(option, netFactor,
		rows*rowSize*netFactor.Value,
		func() string { return fmt.Sprintf("net(%v*rowsize(%v)*%v)", rows, rowSize, netFactor) })
}



// getPlanCostVer2 returns the plan-cost of this sub-plan, which is:
// plan-cost = rows * log2(row-size) * scan-factor
// log2(row-size) is from experiments.
func (p *PhysicalTableScan) getPlanCostVer2(taskType property.TaskType, option *PlanCostOption) (costVer2, error) {
	if p.planCostInit && !hasCostFlag(option.CostFlag, CostFlagRecalculate) {
		return p.planCostVer2, nil
	}

	rows := getCardinality(p, option.CostFlag)
	var rowSize float64
	if p.StoreType == kv.TiKV {
		rowSize = getAvgRowSize(p.stats, p.tblCols) // consider all columns if TiKV
	} else { // TiFlash
		rowSize = getAvgRowSize(p.stats, p.schema.Columns)
	}
	rowSize = math.Max(rowSize, 2.0)
	scanFactor := getTaskScanFactorVer2(p, p.StoreType, taskType)

	p.planCostVer2 = scanCostVer2(option, rows, rowSize, scanFactor)

	// give TiFlash a start-up cost to let the optimizer prefers to use TiKV to process small table scans.
	if p.StoreType == kv.TiFlash {
		p.planCostVer2 = sumCostVer2(p.planCostVer2, scanCostVer2(option, 10000, rowSize, scanFactor))
	}

	p.planCostInit = true
	return p.planCostVer2, nil
}

func scanCostVer2(option *PlanCostOption, rows, rowSize float64, scanFactor costVer2Factor) costVer2 {
	if rowSize < 1 {
		rowSize = 1
	}
	return newCostVer2(option, scanFactor,
		// rows * log(row-size) * scanFactor, log2 from experiments
		rows*math.Log2(rowSize)*scanFactor.Value,
		func() string { return fmt.Sprintf("scan(%v*logrowsize(%v)*%v)", rows, rowSize, scanFactor) })
}

scanFactor的代价默认是40.7,netFactor的代价默认是3.96。结合代码来看,命中索引的代价更优。

join代价计算方式

go 复制代码
// getPlanCostVer2 returns the plan-cost of this sub-plan, which is:
// plan-cost = build-child-cost + build-filter-cost +
// (probe-cost + probe-filter-cost) / concurrency
// probe-cost = probe-child-cost * build-rows / batchRatio
func (p *PhysicalIndexJoin) getPlanCostVer2(taskType property.TaskType, option *PlanCostOption) (costVer2, error) {
	return p.getIndexJoinCostVer2(taskType, option, 0)
}

func (p *PhysicalIndexHashJoin) getPlanCostVer2(taskType property.TaskType, option *PlanCostOption) (costVer2, error) {
	return p.getIndexJoinCostVer2(taskType, option, 1)
}

func (p *PhysicalIndexMergeJoin) getPlanCostVer2(taskType property.TaskType, option *PlanCostOption) (costVer2, error) {
	return p.getIndexJoinCostVer2(taskType, option, 2)
}

func (p *PhysicalIndexJoin) getIndexJoinCostVer2(taskType property.TaskType, option *PlanCostOption, indexJoinType int) (costVer2, error) {
	if p.planCostInit && !hasCostFlag(option.CostFlag, CostFlagRecalculate) {
		return p.planCostVer2, nil
	}

	build, probe := p.children[1-p.InnerChildIdx], p.children[p.InnerChildIdx]
	buildRows := getCardinality(build, option.CostFlag)
	buildRowSize := getAvgRowSize(build.Stats(), build.Schema().Columns)
	probeRowsOne := getCardinality(probe, option.CostFlag)
	probeRowsTot := probeRowsOne * buildRows
	probeRowSize := getAvgRowSize(probe.Stats(), probe.Schema().Columns)
	buildFilters, probeFilters := p.LeftConditions, p.RightConditions
	probeConcurrency := float64(p.ctx.GetSessionVars().IndexLookupJoinConcurrency())
	cpuFactor := getTaskCPUFactorVer2(p, taskType)
	memFactor := getTaskMemFactorVer2(p, taskType)
	requestFactor := getTaskRequestFactorVer2(p, taskType)

	buildFilterCost := filterCostVer2(option, buildRows, buildFilters, cpuFactor)
	buildChildCost, err := build.getPlanCostVer2(taskType, option)
	if err != nil {
		return zeroCostVer2, err
	}
	buildTaskCost := newCostVer2(option, cpuFactor,
		buildRows*10*cpuFactor.Value,
		func() string { return fmt.Sprintf("cpu(%v*10*%v)", buildRows, cpuFactor) })
	startCost := newCostVer2(option, cpuFactor,
		10*3*cpuFactor.Value,
		func() string { return fmt.Sprintf("cpu(10*3*%v)", cpuFactor) })

	probeFilterCost := filterCostVer2(option, probeRowsTot, probeFilters, cpuFactor)
	probeChildCost, err := probe.getPlanCostVer2(taskType, option)
	if err != nil {
		return zeroCostVer2, err
	}

	var hashTableCost costVer2
	switch indexJoinType {
	case 1: // IndexHashJoin
		hashTableCost = hashBuildCostVer2(option, buildRows, buildRowSize, float64(len(p.RightJoinKeys)), cpuFactor, memFactor)
	case 2: // IndexMergeJoin
		hashTableCost = newZeroCostVer2(traceCost(option))
	default: // IndexJoin
		hashTableCost = hashBuildCostVer2(option, probeRowsTot, probeRowSize, float64(len(p.LeftJoinKeys)), cpuFactor, memFactor)
	}

	// IndexJoin executes a batch of rows at a time, so the actual cost of this part should be
	//  `innerCostPerBatch * numberOfBatches` instead of `innerCostPerRow * numberOfOuterRow`.
	// Use an empirical value batchRatio to handle this now.
	// TODO: remove this empirical value.
	batchRatio := 6.0
	probeCost := divCostVer2(mulCostVer2(probeChildCost, buildRows), batchRatio)

	// Double Read Cost
	doubleReadCost := newZeroCostVer2(traceCost(option))
	if p.ctx.GetSessionVars().IndexJoinDoubleReadPenaltyCostRate > 0 {
		batchSize := float64(p.ctx.GetSessionVars().IndexJoinBatchSize)
		taskPerBatch := 1024.0 // TODO: remove this magic number
		doubleReadTasks := buildRows / batchSize * taskPerBatch
		doubleReadCost = doubleReadCostVer2(option, doubleReadTasks, requestFactor)
		doubleReadCost = mulCostVer2(doubleReadCost, p.ctx.GetSessionVars().IndexJoinDoubleReadPenaltyCostRate)
	}

	p.planCostVer2 = sumCostVer2(startCost, buildChildCost, buildFilterCost, buildTaskCost, divCostVer2(sumCostVer2(doubleReadCost, probeCost, probeFilterCost, hashTableCost), probeConcurrency))
	p.planCostInit = true
	return p.planCostVer2, nil
}

关键在于:

go 复制代码
	switch indexJoinType {
	case 1: // IndexHashJoin
		hashTableCost = hashBuildCostVer2(option, buildRows, buildRowSize, float64(len(p.RightJoinKeys)), cpuFactor, memFactor)
	case 2: // IndexMergeJoin
		hashTableCost = newZeroCostVer2(traceCost(option))
	default: // IndexJoin
		hashTableCost = hashBuildCostVer2(option, probeRowsTot, probeRowSize, float64(len(p.LeftJoinKeys)), cpuFactor, memFactor)
	}

对应方法:

go 复制代码
func hashBuildCostVer2(option *PlanCostOption, buildRows, buildRowSize, nKeys float64, cpuFactor, memFactor costVer2Factor) costVer2 {
	// TODO: 1) consider types of keys, 2) dedicated factor for build-probe hash table
	hashKeyCost := newCostVer2(option, cpuFactor,
		buildRows*nKeys*cpuFactor.Value,
		func() string { return fmt.Sprintf("hashkey(%v*%v*%v)", buildRows, nKeys, cpuFactor) })
	hashMemCost := newCostVer2(option, memFactor,
		buildRows*buildRowSize*memFactor.Value,
		func() string { return fmt.Sprintf("hashmem(%v*%v*%v)", buildRows, buildRowSize, memFactor) })
	hashBuildCost := newCostVer2(option, cpuFactor,
		buildRows*cpuFactor.Value,
		func() string { return fmt.Sprintf("hashbuild(%v*%v)", buildRows, cpuFactor) })
	return sumCostVer2(hashKeyCost, hashMemCost, hashBuildCost)
}

func newZeroCostVer2(trace bool) (ret costVer2) {
	if trace {
		ret.trace = &costTrace{make(map[string]float64), ""}
	}
	return
}

简单的看一下代码,我们可以发现,从大多数的场景来看,按照代价从小到大来排,这几种Join是MergeJoin<HashJoin<IndexJoin。

5.4.2执行计划枚举与择优

总得来说这块代码较为简单,本质就是枚举所有符合条件的物理执行计划,并挑选出代价最小的执行计划,故不再列举代码。有兴趣的同学可以根据以下大纲自行翻阅:

log 复制代码
|--planner/core/find_best_task.go

\-- findBestTask

\-- enumeratePhysicalPlans4Task

\-- compareTaskCost

\-- getTaskPlanCost

|-- planner/core/plan_cost_ver2.go

\-- getPlanCost

6.其他

6.1 参考与引用的文章

6.2 知识补充:code generation && vectorized execution

数据库引擎执行器中非常出名的两种优化方式,code generation和 vectorized execution。

code generation主要是根据上下文来生成一整段优化过的代码,这与那种嵌套大量if...else、for循环、虚方法的代码完全相反,完全面向性能考虑。

vectorized execution基于拉模型。相比于一次拉一个tuple来说,它的批量拉取减少了多次拉取的开销,同时还可以使用到SIMD。基于这种场景,vectorized execution的优化更加适用于列式数据库。

相关推荐
o(╥﹏╥)32 分钟前
linux(ubuntu )卡死怎么强制重启
linux·数据库·ubuntu·系统安全
阿里嘎多学长1 小时前
docker怎么部署高斯数据库
运维·数据库·docker·容器
Yuan_o_1 小时前
Linux 基本使用和程序部署
java·linux·运维·服务器·数据库·后端
Sunyanhui11 小时前
牛客网 SQL36查找后排序
数据库·sql·mysql
老王笔记1 小时前
MHA binlog server
数据库·mysql
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
道一云黑板报2 小时前
Flink集群批作业实践:七析BI批作业执行
大数据·分布式·数据分析·flink·kubernetes
DT辰白3 小时前
基于Redis的网关鉴权方案与性能优化
数据库·redis·缓存
2401_871213303 小时前
mysql高阶语句
数据库·mysql