【机器学习笔记】11 支持向量机

支 持 向 量 机 ( Support Vector Machine,SVM )

支 持 向 量 机 是 一 类 按 监 督 学 习 ( supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane) 。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。

  • 算法思想
    找到集合边缘上的若干数据(称为支持向量(Support Vector)),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

    假如数据是完全的线性可分的 ,那么学习到的模型可以称为硬间隔支持向量机 。换个说法,硬间隔 指的就是完全分类准确 ,不能存在分类错误的情况。软间隔,就是允许一定量的样本分类错误。

线性可分支持向量机






线性支持向量机




线性不可分支持向量机

核技巧

在低维空间计算获得高维空间的计算结果,满足高维,才能在高维下线性可分。 我们需要引入一个新的概念:核函数。它可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。这样我们就可以使用原来的推导来进行计算,只是所有的推导是在新的空间,而不是在原来的空间中进行,即用核函数来替换当中的内积。



SVM的超参数

𝛾越大,支持向量越少,𝛾值越小,支持向量越多。其中 C是惩罚系数,即对误差的宽容度。 C越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。

SVM普遍使用的准则:

𝑛为特征数,𝑚为训练样本数。

(1)如果相较于𝑚而言,𝑛要大许多,即训练集数据量不够支持我们训练一个复杂的非线性模型,我们选用逻辑回归模型或者不带核函数的支持向量机。

(2)如果𝑛较小,而且𝑚大小中等,例如𝑛在 1-1000 之间,而𝑚在10-10000之间,使用高斯核函数的支持向量机。

(3)如果𝑛较小,而𝑚较大,例如𝑛在1-1000之间,而𝑚大于50000,则使用支持向量机会非常慢,解决方案是创造、增加更多的特征,然后使用逻辑回归或不带核函数的支持向量机。

相关推荐
free-elcmacom22 分钟前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
2301_8107463127 分钟前
CKA冲刺40天笔记 - day20-day21 SSL/TLS详解
运维·笔记·网络协议·kubernetes·ssl
代码输入中...32 分钟前
大模型项目实战:多领域智能应用开发
人工智能·机器学习·ai编程
TextIn智能文档云平台1 小时前
怎么批量将扫描件变成文档?
人工智能·机器学习
YJlio1 小时前
SDelete 学习笔记(9.18):安全删除、空闲清理与介质回收实战
笔记·学习·安全
7443 小时前
数据结构(C语言版)线性表-单链表的拓展及应用
笔记·强化学习
xiaozi41203 小时前
Ruey S. Tsay《时间序列分析》Python实现笔记:综合与应用
开发语言·笔记·python·机器学习
d111111111d3 小时前
STM32低功耗学习-停止模式-(学习笔记)
笔记·stm32·单片机·嵌入式硬件·学习
@游子4 小时前
Python学习笔记-Day5
笔记·python·学习
黎茗Dawn4 小时前
DDPM-KL 散度与 L2 损失
人工智能·算法·机器学习