【NLP】MHA、MQA、GQA机制的区别

Note

  • LLama2的注意力机制使用了GQA。三种机制的图如下:

MHA机制(Multi-head Attention)

MHA(Multi-head Attention)是标准的多头注意力机制,包含h个Query、Key 和 Value 矩阵。所有注意力头的 Key 和 Value 矩阵权重不共享

MQA机制(Multi-Query Attention)

MQA(Multi-Query Attention,Fast Transformer Decoding: One Write-Head is All You Need)是多查询注意力的一种变体,也是用于自回归解码的一种注意力机制。与MHA不同的,MQA 让所有的头之间共享同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。

GQA机制(Grouped-Query Attention)

GQA(Grouped-Query Attention,GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints)是分组查询注意力,GQA将查询头分成G组,每个组共享一个Key 和 Value 矩阵。GQA-G是指具有G组的grouped-query attention。GQA-1具有单个组,因此具有单个Key 和 Value,等效于MQA。若GQA-H具有与头数相等的组,则其等效于MHA。GQA介于MHA和MQA之间。GQA机制,多头共用 KV Cache。

Reference

1\] [一文通透各种注意力:从多头注意力MHA到分组查询注意力GQA、多查询注意力MQA](https://blog.csdn.net/v_july_v/article/details/134228287) \[2\] [Transformer系列:注意力机制的优化,MQA和GQA原理简述](https://www.jianshu.com/p/c7b40d8526dd) \[3\] [Navigating the Attention Landscape: MHA, MQA, and GQA Decoded](https://iamshobhitagarwal.medium.com/navigating-the-attention-landscape-mha-mqa-and-gqa-decoded-288217d0a7d1)

相关推荐
WooaiJava3 小时前
AI 智能助手项目面试技术要点总结(前端部分)
javascript·大模型·html5
爱喝白开水a3 小时前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
“负拾捌”8 小时前
python + uniapp 结合腾讯云实现实时语音识别功能(WebSocket)
python·websocket·微信小程序·uni-app·大模型·腾讯云·语音识别
韦东东21 小时前
RAGFlow v0.20的Agent重大更新:text2sql的Agent案例测试
人工智能·大模型·agent·text2sql·ragflow
OpenBayes21 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
PPIO派欧云1 天前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
CoderJia程序员甲1 天前
GitHub 热榜项目 - 日榜(2026-02-05)
ai·开源·大模型·github·ai教程
七牛云行业应用1 天前
3.5s降至0.4s!Claude Code生产级连接优化与Agent实战
运维·人工智能·大模型·aigc·claude
香芋Yu1 天前
【大模型教程——第四部分:大模型应用开发】第4章_多模态大模型原理
ai·大模型·多模态·大模型应用
穆友航1 天前
配置 OpenClaw 使用 Ollama 本地模型
大模型·ollama·openclaw