# Kernel Prediction Networks DENOISE

文章目录

  • [Kernel Prediction Networks DENOISE](#Kernel Prediction Networks DENOISE)
    • [1.【论文复现】Kernel Prediction Networks](#1.【论文复现】Kernel Prediction Networks)
    • [2. Burst Denoising with Kernel Prediction Networks cvpr2018](#2. Burst Denoising with Kernel Prediction Networks cvpr2018)
    • [3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES](#3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES)
    • [4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution](#4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution)

Kernel Prediction Networks DENOISE

1.【论文复现】Kernel Prediction Networks

https://zhuanlan.zhihu.com/p/73349632

2. Burst Denoising with Kernel Prediction Networks cvpr2018

https://openaccess.thecvf.com/content_cvpr_2018/papers/Mildenhall_Burst_Denoising_With_CVPR_2018_paper.pdf

效果还是很好的

博客:https://blog.csdn.net/zbwgycm/article/details/80987721

代码:https://github.com/google/burst-denoising

3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES

和 2 挺接近:

主要是预测不同 kernel size的kernel.

另外为了减少计算量:

  1. 预测 n x n的kennel 改为 2 x n, 2维变1维 吗, 核分离技术
  2. inference的时候 先将各种kernel合并为一个

其他和2 基本一致:

使用 L2 灰度损失 和 L1梯度损失, 训练的时候采用退火训练方法。

效果比2好:

第1行是本文,第二行是 2 文, 其他是kernel size的大小,但是是分离的1d kernel, 所以计算成本比2d kernel小。

4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution

相比3 主要是引入 各个kernel的weight

比如 kernel size为1 ,3, 5.。。 的kernel 的weight, 3中是求平均,这里会预测weight, 然后加权。

code:https://github.com/chowy333/WMKPN-Burst_Super-Resolution

相关推荐
odoo中国7 分钟前
深度学习 Deep Learning 第16章 结构化概率模型
人工智能·深度学习·结构化模型
摸鱼仙人~14 分钟前
为什么有的深度学习训练,有训练集、验证集、测试集3个划分,有的只是划分训练集和测试集?
人工智能·深度学习
Jamence1 小时前
多模态大语言模型arxiv论文略读(一)
人工智能·深度学习·语言模型
KangkangLoveNLP1 小时前
手动实现一个迷你Llama:使用SentencePiece实现自己的tokenizer
人工智能·深度学习·学习·算法·transformer·llama
thinkMoreAndDoMore3 小时前
深度学习处理文本(5)
人工智能·python·深度学习
weixin_750335523 小时前
李沐 X 动手学深度学习--第九章 现代循环神经网络
人工智能·rnn·深度学习
摸鱼仙人~3 小时前
深度学习数据集划分比例多少合适
人工智能·深度学习
矩阵猫咪3 小时前
基于时间卷积网络TCN实现电力负荷多变量时序预测(PyTorch版)
pytorch·深度学习·tcn·时序预测·时间卷积网络·电力负荷
Blossom.1183 小时前
《探索边缘计算:重塑未来智能物联网的关键技术》
人工智能·深度学习·神经网络·物联网·机器学习·计算机视觉·边缘计算
wgc2k4 小时前
吴恩达深度学习复盘(6)神经网络的矢量化原理
python·深度学习·矩阵