# Kernel Prediction Networks DENOISE

文章目录

  • [Kernel Prediction Networks DENOISE](#Kernel Prediction Networks DENOISE)
    • [1.【论文复现】Kernel Prediction Networks](#1.【论文复现】Kernel Prediction Networks)
    • [2. Burst Denoising with Kernel Prediction Networks cvpr2018](#2. Burst Denoising with Kernel Prediction Networks cvpr2018)
    • [3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES](#3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES)
    • [4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution](#4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution)

Kernel Prediction Networks DENOISE

1.【论文复现】Kernel Prediction Networks

https://zhuanlan.zhihu.com/p/73349632

2. Burst Denoising with Kernel Prediction Networks cvpr2018

https://openaccess.thecvf.com/content_cvpr_2018/papers/Mildenhall_Burst_Denoising_With_CVPR_2018_paper.pdf

效果还是很好的

博客:https://blog.csdn.net/zbwgycm/article/details/80987721

代码:https://github.com/google/burst-denoising

3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES

和 2 挺接近:

主要是预测不同 kernel size的kernel.

另外为了减少计算量:

  1. 预测 n x n的kennel 改为 2 x n, 2维变1维 吗, 核分离技术
  2. inference的时候 先将各种kernel合并为一个

其他和2 基本一致:

使用 L2 灰度损失 和 L1梯度损失, 训练的时候采用退火训练方法。

效果比2好:

第1行是本文,第二行是 2 文, 其他是kernel size的大小,但是是分离的1d kernel, 所以计算成本比2d kernel小。

4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution

相比3 主要是引入 各个kernel的weight

比如 kernel size为1 ,3, 5.。。 的kernel 的weight, 3中是求平均,这里会预测weight, 然后加权。

code:https://github.com/chowy333/WMKPN-Burst_Super-Resolution

相关推荐
jackylzh22 分钟前
配置pytorch环境,并调试YOLO
人工智能·pytorch·yolo
RaymondZhao342 小时前
【深度硬核】AI Infra 架构漫游指南
人工智能·深度学习·架构
惊鸿一博2 小时前
深度学习概念_随机梯度下降 与 ADAM 的区别与联系 公式化表达
人工智能·深度学习
xoliu12 小时前
Pytorch核心基础入门
人工智能·pytorch·python
其美杰布-富贵-李2 小时前
PyTorch Lightning Callback 指南
人工智能·pytorch·python·回调函数·callback
哥布林学者2 小时前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (四)YOLO 的完整传播过程
深度学习·ai
aitoolhub3 小时前
AI生成圣诞视觉图:从节日元素到创意落地的路径
人工智能·深度学习·自然语言处理·节日
雍凉明月夜3 小时前
深度学习网络笔记Ⅰ(CNN)
网络·笔记·深度学习·神经网络·学习·cnn
rayufo3 小时前
对MNIST FASHION数据集训练的准确度的迭代提高
深度学习·机器学习
那雨倾城4 小时前
YOLO + MediaPipe 在PiscCode上解决多脸 Landmark 中「人脸数量固定」的问题
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉