# Kernel Prediction Networks DENOISE

文章目录

  • [Kernel Prediction Networks DENOISE](#Kernel Prediction Networks DENOISE)
    • [1.【论文复现】Kernel Prediction Networks](#1.【论文复现】Kernel Prediction Networks)
    • [2. Burst Denoising with Kernel Prediction Networks cvpr2018](#2. Burst Denoising with Kernel Prediction Networks cvpr2018)
    • [3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES](#3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES)
    • [4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution](#4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution)

Kernel Prediction Networks DENOISE

1.【论文复现】Kernel Prediction Networks

https://zhuanlan.zhihu.com/p/73349632

2. Burst Denoising with Kernel Prediction Networks cvpr2018

https://openaccess.thecvf.com/content_cvpr_2018/papers/Mildenhall_Burst_Denoising_With_CVPR_2018_paper.pdf

效果还是很好的

博客:https://blog.csdn.net/zbwgycm/article/details/80987721

代码:https://github.com/google/burst-denoising

3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES

和 2 挺接近:

主要是预测不同 kernel size的kernel.

另外为了减少计算量:

  1. 预测 n x n的kennel 改为 2 x n, 2维变1维 吗, 核分离技术
  2. inference的时候 先将各种kernel合并为一个

其他和2 基本一致:

使用 L2 灰度损失 和 L1梯度损失, 训练的时候采用退火训练方法。

效果比2好:

第1行是本文,第二行是 2 文, 其他是kernel size的大小,但是是分离的1d kernel, 所以计算成本比2d kernel小。

4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution

相比3 主要是引入 各个kernel的weight

比如 kernel size为1 ,3, 5.。。 的kernel 的weight, 3中是求平均,这里会预测weight, 然后加权。

code:https://github.com/chowy333/WMKPN-Burst_Super-Resolution

相关推荐
代码猪猪傻瓜coding6 分钟前
【模块】 ASFF 模块
人工智能·深度学习
阿正的梦工坊12 分钟前
Sliding Window Attention(滑动窗口注意力)解析: Pytorch实现并结合全局注意力(Global Attention )
人工智能·pytorch·python
阿正的梦工坊1 小时前
PyTorch下三角矩阵生成函数torch.tril的深度解析
人工智能·pytorch·矩阵
老A的AI实验室2 小时前
通俗理解Test time Scaling Law、RL Scaling Law和预训练Scaling Law
人工智能·深度学习·算法·chatgpt·llm·agi·rl
神经星星3 小时前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习
大数据追光猿3 小时前
【深度学习】Pytorch项目实战-基于协同过滤实现物品推荐系统
人工智能·pytorch·python·深度学习·ai编程·推荐算法
师范大学生3 小时前
基于CNN的FashionMNIST数据集识别2——模型训练
python·深度学习·cnn
Felaim5 小时前
基于模仿学习(IL)的端到端自动驾驶发展路径
人工智能·深度学习·自动驾驶
神舟之光6 小时前
动手学深度学习2025.2.23-预备知识之-线性代数
人工智能·深度学习·线性代数
日记成书6 小时前
详细介绍嵌入式硬件设计
嵌入式硬件·深度学习·学习