# Kernel Prediction Networks DENOISE

文章目录

  • [Kernel Prediction Networks DENOISE](#Kernel Prediction Networks DENOISE)
    • [1.【论文复现】Kernel Prediction Networks](#1.【论文复现】Kernel Prediction Networks)
    • [2. Burst Denoising with Kernel Prediction Networks cvpr2018](#2. Burst Denoising with Kernel Prediction Networks cvpr2018)
    • [3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES](#3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES)
    • [4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution](#4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution)

Kernel Prediction Networks DENOISE

1.【论文复现】Kernel Prediction Networks

https://zhuanlan.zhihu.com/p/73349632

2. Burst Denoising with Kernel Prediction Networks cvpr2018

https://openaccess.thecvf.com/content_cvpr_2018/papers/Mildenhall_Burst_Denoising_With_CVPR_2018_paper.pdf

效果还是很好的

博客:https://blog.csdn.net/zbwgycm/article/details/80987721

代码:https://github.com/google/burst-denoising

3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES

和 2 挺接近:

主要是预测不同 kernel size的kernel.

另外为了减少计算量:

  1. 预测 n x n的kennel 改为 2 x n, 2维变1维 吗, 核分离技术
  2. inference的时候 先将各种kernel合并为一个

其他和2 基本一致:

使用 L2 灰度损失 和 L1梯度损失, 训练的时候采用退火训练方法。

效果比2好:

第1行是本文,第二行是 2 文, 其他是kernel size的大小,但是是分离的1d kernel, 所以计算成本比2d kernel小。

4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution

相比3 主要是引入 各个kernel的weight

比如 kernel size为1 ,3, 5.。。 的kernel 的weight, 3中是求平均,这里会预测weight, 然后加权。

code:https://github.com/chowy333/WMKPN-Burst_Super-Resolution

相关推荐
Coovally AI模型快速验证2 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然2 小时前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
Python图像识别4 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
PyAIGCMaster4 小时前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
深蓝电商API5 小时前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
tt5555555555555 小时前
Transformer原理与过程详解
网络·深度学习·transformer
qzhqbb5 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
Victory_orsh6 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
java1234_小锋6 小时前
PyTorch2 Python深度学习 - 模型保存与加载
开发语言·python·深度学习·pytorch2