# Kernel Prediction Networks DENOISE

文章目录

  • [Kernel Prediction Networks DENOISE](#Kernel Prediction Networks DENOISE)
    • [1.【论文复现】Kernel Prediction Networks](#1.【论文复现】Kernel Prediction Networks)
    • [2. Burst Denoising with Kernel Prediction Networks cvpr2018](#2. Burst Denoising with Kernel Prediction Networks cvpr2018)
    • [3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES](#3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES)
    • [4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution](#4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution)

Kernel Prediction Networks DENOISE

1.【论文复现】Kernel Prediction Networks

https://zhuanlan.zhihu.com/p/73349632

2. Burst Denoising with Kernel Prediction Networks cvpr2018

https://openaccess.thecvf.com/content_cvpr_2018/papers/Mildenhall_Burst_Denoising_With_CVPR_2018_paper.pdf

效果还是很好的

博客:https://blog.csdn.net/zbwgycm/article/details/80987721

代码:https://github.com/google/burst-denoising

3. MULTI-KERNEL PREDICTION NETWORKS FOR DENOISING OF BURST IMAGES

和 2 挺接近:

主要是预测不同 kernel size的kernel.

另外为了减少计算量:

  1. 预测 n x n的kennel 改为 2 x n, 2维变1维 吗, 核分离技术
  2. inference的时候 先将各种kernel合并为一个

其他和2 基本一致:

使用 L2 灰度损失 和 L1梯度损失, 训练的时候采用退火训练方法。

效果比2好:

第1行是本文,第二行是 2 文, 其他是kernel size的大小,但是是分离的1d kernel, 所以计算成本比2d kernel小。

4. Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution

相比3 主要是引入 各个kernel的weight

比如 kernel size为1 ,3, 5.。。 的kernel 的weight, 3中是求平均,这里会预测weight, 然后加权。

code:https://github.com/chowy333/WMKPN-Burst_Super-Resolution

相关推荐
百***24371 小时前
GPT-5.2国内调用+API中转+成本管控
大数据·人工智能·深度学习
Cigaretter71 小时前
Day 38 早停策略和模型权重的保存
python·深度学习·机器学习
迷你可可小生2 小时前
常见神经网络模块
人工智能·深度学习
bst@微胖子3 小时前
HuggingFace项目实战之分类任务实战
pytorch·深度学习·分类
YukiMori233 小时前
基于Paddle微调ERNIE的中文情感分析实战教程
深度学习·机器学习
小途软件3 小时前
基于深度学习的人脸检测算法研究
java·人工智能·pytorch·python·深度学习·语言模型
guoketg3 小时前
Vision Transformer(ViT)的讲解和面试题目讲解
人工智能·python·深度学习·vit
热心不起来的市民小周3 小时前
测测你的牌:基于 MobileNetV2 的车牌内容检测
python·深度学习·计算机视觉
空山新雨后、4 小时前
Masked AutoEncoder(MAE)详解:高 Mask 率如何造就强视觉表征
人工智能·深度学习·chatgpt·多模态