交叉熵损失函数(Cross-Entropy Loss)的基本概念与程序代码

交叉熵损失函数(Cross-Entropy Loss)是机器学习和深度学习中常用的损失函数之一,用于分类问题。其基本概念如下:

1. 基本解释

交叉熵损失函数衡量了模型预测的概率分布与真实概率分布之间的差异。在分类问题中,通常有一个真实的类别标签,而模型会输出一个概率分布,表示样本属于各个类别的概率。交叉熵损失函数通过比较这两个分布来计算损失,从而指导模型的优化。

具体来说,对于二分类问题,真实标签通常表示为0或1,而模型输出一个介于0和1之间的概率值。交叉熵损失函数计算的是真实标签与模型预测概率之间的负对数似然。如果真实标签为1,则损失函数关注模型预测为正类的概率的对数值;如果真实标签为0,则损失函数关注模型预测为负类的概率的对数值。

对于多分类问题,真实标签通常使用one-hot编码表示,即只有一个位置为1,其余位置为0。模型输出一个概率向量,表示样本属于各个类别的概率。交叉熵损失函数计算的是真实标签中每个位置对应的模型预测概率的负对数似然之和。

2. Python程序代码

在Python中,可以使用NumPy库或深度学习框架(如TensorFlow、PyTorch)来计算交叉熵损失函数。以下是使用NumPy计算二分类和多分类交叉熵损失函数的示例代码:

python 复制代码
import numpy as np

# 二分类交叉熵损失函数
def binary_cross_entropy_loss(y_true, y_pred):
    return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))

# 多分类交叉熵损失函数
def categorical_cross_entropy_loss(y_true, y_pred):
    num_classes = y_true.shape[1]
    return -np.mean(np.sum(y_true * np.log(y_pred + 1e-9), axis=1))

# 示例用法
# 二分类
y_true_binary = np.array([[0], [1], [1], [0]])
y_pred_binary = np.array([[0.1], [0.9], [0.8], [0.4]])
loss_binary = binary_cross_entropy_loss(y_true_binary, y_pred_binary)
print("Binary Cross-Entropy Loss:", loss_binary)

# 多分类
y_true_categorical = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
y_pred_categorical = np.array([[0.7, 0.2, 0.1], [0.1, 0.8, 0.1], [0.2, 0.2, 0.6]])
loss_categorical = categorical_cross_entropy_loss(y_true_categorical, y_pred_categorical)
print("Categorical Cross-Entropy Loss:", loss_categorical)

请注意,上述代码示例仅用于演示目的,实际使用中可能会使用深度学习框架提供的交叉熵损失函数,因为它们通常更加优化和稳定。例如,在TensorFlow中,可以使用tf.keras.losses.BinaryCrossentropytf.keras.losses.CategoricalCrossentropy类来计算二分类和多分类交叉熵损失函数。在PyTorch中,可以使用torch.nn.BCELosstorch.nn.CrossEntropyLoss类来计算相应的损失函数。

相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子5 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉