SPSSAU【文本分析】|文本聚类

SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以'行'为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。


按词聚类分析

按词聚类分析操作如下图:

默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其于词向量值进行聚类分析(具体为kmeans聚类),接着进行MDS分析,最终渲染出各个关键词的坐标定位信息,可视化展示词之间的聚类信息。

特别提示:

关键词的词向量提取时,有可能无法获取得到,因而在表格中会展示为'未识别词暂不聚类'即该词不进入聚类分析。

以及默认Demo数据时出来结果如下图:

图中不同的颜色代表不同的类别,其意味着各个关键词之间的类别区分。默认情况下聚类为3类,如果分析关键词较多时,可尝试修改聚类类别个数后,重新分析即可。除此之外,关键词之间的关系情况,还可通过'共词矩阵'(即两个词同时出现在'同一行'的数量情况)查看关键词之间的关系情况,当两个词同时出现的次数越高时,很可能二者关系越为紧密。

在按词聚类分析时,SPSSAU默认提供'共词矩阵'表格,并且可进行下载。'共词矩阵'在社会网络关系图分析中还有进一步使用,具体也可查看社会网络关系图。

默认情况下,SPSSAU将词频最高的前20个关键词进行聚类分析,如果希望改变选中的关键词,可点击'选择分析词'进行自由选择,如下图所示:

可修改高频词的个数,也或自由的点击选择分析词,也可以通过搜索词进行搜索,然后进行选中或者不选中操作等。

按行聚类分析

不同于按词聚类分析,按行聚类分析是指以'行'为单位,针对每行数据进行聚类分析(具体为kmeans聚类),并且计算出各'行'数据的聚类类别,也可直接进行下载聚类类别信息。一般来说,聚类类别选择为3个即可,当然如果数据行数较多,可考虑修改成更多的聚类类别个数,如下图所示:

输出结果时,包括各'行'数据的聚类类别,具体使用时可对其进行下载,用于进一步使用。

相关推荐
Panesle26 分钟前
transformer架构与其它架构对比
人工智能·深度学习·transformer
我有医保我先冲1 小时前
AI大模型与人工智能的深度融合:重构医药行业数字化转型的底层逻辑
人工智能·重构
pen-ai1 小时前
【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
人工智能·自然语言处理·动态规划
Chaos_Wang_1 小时前
NLP高频面试题(二十九)——大模型解码常见参数解析
人工智能·自然语言处理
Acrelhuang1 小时前
8.3MW屋顶光伏+光储协同:上海汽车变速器低碳工厂的能源革命-安科瑞黄安南
大数据·数据库·人工智能·物联网·数据库开发
区块链蓝海1 小时前
沉浸式体验测评|AI Ville:我在Web3小镇“生活”了一周
人工智能·web3·生活
whaosoft-1432 小时前
51c自动驾驶~合集15
人工智能
花楸树2 小时前
前端搭建 MCP Client(Web版)+ Server + Agent 实践
前端·人工智能
用户87612829073742 小时前
前端ai对话框架semi-design-vue
前端·人工智能