SPSSAU【文本分析】|文本聚类

SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以'行'为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。


按词聚类分析

按词聚类分析操作如下图:

默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其于词向量值进行聚类分析(具体为kmeans聚类),接着进行MDS分析,最终渲染出各个关键词的坐标定位信息,可视化展示词之间的聚类信息。

特别提示:

关键词的词向量提取时,有可能无法获取得到,因而在表格中会展示为'未识别词暂不聚类'即该词不进入聚类分析。

以及默认Demo数据时出来结果如下图:

图中不同的颜色代表不同的类别,其意味着各个关键词之间的类别区分。默认情况下聚类为3类,如果分析关键词较多时,可尝试修改聚类类别个数后,重新分析即可。除此之外,关键词之间的关系情况,还可通过'共词矩阵'(即两个词同时出现在'同一行'的数量情况)查看关键词之间的关系情况,当两个词同时出现的次数越高时,很可能二者关系越为紧密。

在按词聚类分析时,SPSSAU默认提供'共词矩阵'表格,并且可进行下载。'共词矩阵'在社会网络关系图分析中还有进一步使用,具体也可查看社会网络关系图。

默认情况下,SPSSAU将词频最高的前20个关键词进行聚类分析,如果希望改变选中的关键词,可点击'选择分析词'进行自由选择,如下图所示:

可修改高频词的个数,也或自由的点击选择分析词,也可以通过搜索词进行搜索,然后进行选中或者不选中操作等。

按行聚类分析

不同于按词聚类分析,按行聚类分析是指以'行'为单位,针对每行数据进行聚类分析(具体为kmeans聚类),并且计算出各'行'数据的聚类类别,也可直接进行下载聚类类别信息。一般来说,聚类类别选择为3个即可,当然如果数据行数较多,可考虑修改成更多的聚类类别个数,如下图所示:

输出结果时,包括各'行'数据的聚类类别,具体使用时可对其进行下载,用于进一步使用。

相关推荐
ai_top_trends3 分钟前
2026 年工作计划 PPT 横评:AI 自动生成的优劣分析
人工智能·python·powerpoint
踏浪无痕32 分钟前
架构师如何学习 AI:三个月掌握核心能力的务实路径
人工智能·后端·程序员
闲看云起41 分钟前
大模型应用开发框架全景图
人工智能·语言模型·ai编程
万行1 小时前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
木卫四科技1 小时前
DocETL 入门:让非结构化数据处理变得简单智能
人工智能·木卫四
玖日大大1 小时前
OceanBase SeekDB:AI 原生数据库的技术革命与实践指南
数据库·人工智能·oceanbase
小润nature1 小时前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠1 小时前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
轻竹办公PPT1 小时前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint
浔川python社1 小时前
【版本更新提示】浔川 AI 翻译 v6.0 合规优化版已上线
人工智能