深度学习-吴恩达L1W2作业

作业1:吴恩达《深度学习》L1W2作业1 - Heywhale.com

作业2:吴恩达《深度学习》L1W2作业2 - Heywhale.com

作业1

你需要记住的内容:

-np.exp(x)适用于任何np.array x并将指数函数应用于每个坐标

-sigmoid函数及其梯度

sigmoid函数的梯度:

-image2vector通常用于深度学习

-np.reshape被广泛使用。 保持矩阵/向量尺寸不变有助于我们消除许多错误。

可以使用assert保证尺寸是我们想要的。

-numpy具有高效的内置功能

-broadcasting非常有用

你需要记住的内容:

-向量化在深度学习中非常重要, 它保证了计算的效率和清晰度。

-了解L1和L2损失函数。

-掌握诸多numpy函数,例如np.sum,np.dot,np.multiply,np.maximum等。

np.dot表示矩阵乘法,直接使用*表示元素乘法,也就是说,它将两个数组中对应位置的元素相乘,得到一个新的具有相同形状的数组,*与np.multiply类似。

作业2

你需要记住的内容:

预处理数据集的常见步骤是:

  • 找出数据的尺寸和维度(m_train,m_test,num_px等)
  • 重塑数据集,以使每个示例都是大小为(num_px * *num_px **3,1)的向量
  • "标准化"数据

我的理解是X.shape[0]表示多少行, -1表示剩余的所有维度数据合并成列,最后转置,所以最后行列互换,实验中train_set_x_orig的shape为(209,64,64,3),所以转置前表示209行,每一列都是其他维度数据的合并,最后转置,达成了209列,每一列表示每个特征。

你需要记住以下几点:

你已经实现了以下几个函数:

  • 初始化(w,b)
  • 迭代优化损失以学习参数(w,b):
    • 计算损失及其梯度
    • 使用梯度下降更新参数
  • 使用学到的(w,b)来预测给定示例集的标签
相关推荐
丝斯2011几秒前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
小鸡吃米…19 分钟前
机器学习中的代价函数
人工智能·python·机器学习
chatexcel1 小时前
元空AI+Clawdbot:7×24 AI办公智能体新形态详解(长期上下文/自动化任务/工具粘合)
运维·人工智能·自动化
All The Way North-1 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
bylander1 小时前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
Techblog of HaoWANG2 小时前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace01232 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_941418552 小时前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔2 小时前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人
人工小情绪2 小时前
Clawbot (OpenClaw)简介
人工智能