深度学习-吴恩达L1W2作业

作业1:吴恩达《深度学习》L1W2作业1 - Heywhale.com

作业2:吴恩达《深度学习》L1W2作业2 - Heywhale.com

作业1

你需要记住的内容:

-np.exp(x)适用于任何np.array x并将指数函数应用于每个坐标

-sigmoid函数及其梯度

sigmoid函数的梯度:

-image2vector通常用于深度学习

-np.reshape被广泛使用。 保持矩阵/向量尺寸不变有助于我们消除许多错误。

可以使用assert保证尺寸是我们想要的。

-numpy具有高效的内置功能

-broadcasting非常有用

你需要记住的内容:

-向量化在深度学习中非常重要, 它保证了计算的效率和清晰度。

-了解L1和L2损失函数。

-掌握诸多numpy函数,例如np.sum,np.dot,np.multiply,np.maximum等。

np.dot表示矩阵乘法,直接使用*表示元素乘法,也就是说,它将两个数组中对应位置的元素相乘,得到一个新的具有相同形状的数组,*与np.multiply类似。

作业2

你需要记住的内容:

预处理数据集的常见步骤是:

  • 找出数据的尺寸和维度(m_train,m_test,num_px等)
  • 重塑数据集,以使每个示例都是大小为(num_px * *num_px **3,1)的向量
  • "标准化"数据

我的理解是X.shape[0]表示多少行, -1表示剩余的所有维度数据合并成列,最后转置,所以最后行列互换,实验中train_set_x_orig的shape为(209,64,64,3),所以转置前表示209行,每一列都是其他维度数据的合并,最后转置,达成了209列,每一列表示每个特征。

你需要记住以下几点:

你已经实现了以下几个函数:

  • 初始化(w,b)
  • 迭代优化损失以学习参数(w,b):
    • 计算损失及其梯度
    • 使用梯度下降更新参数
  • 使用学到的(w,b)来预测给定示例集的标签
相关推荐
副露のmagic10 分钟前
深度学习基础复健
人工智能·深度学习
番茄大王sc12 分钟前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
代码丰26 分钟前
SpringAI+RAG向量库+知识图谱+多模型路由+Docker打造SmartHR智能招聘助手
人工智能·spring·知识图谱
独处东汉1 小时前
freertos开发空气检测仪之输入子系统结构体设计
数据结构·人工智能·stm32·单片机·嵌入式硬件·算法
乐迪信息1 小时前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
风栖柳白杨1 小时前
【语音识别】soundfile使用方法
人工智能·语音识别
胡西风_foxww1 小时前
ObsidianAI_学习一个陌生知识领域_建立学习路径和知识库框架_写一本书
人工智能·笔记·学习·知识库·obsidian·notebooklm·写一本书
Hernon1 小时前
AI智能体 - 探索与发现 Clawdbot >> Moltbot
大数据·人工智能·ai智能体·ai开发框架
输出的都是我的1 小时前
科研-工具箱汇总
人工智能
昨夜见军贴06162 小时前
IACheck AI审核功能进化新维度:重构检测报告审核技术价值链的系统路径
人工智能·重构