深度学习-吴恩达L1W2作业

作业1:吴恩达《深度学习》L1W2作业1 - Heywhale.com

作业2:吴恩达《深度学习》L1W2作业2 - Heywhale.com

作业1

你需要记住的内容:

-np.exp(x)适用于任何np.array x并将指数函数应用于每个坐标

-sigmoid函数及其梯度

sigmoid函数的梯度:

-image2vector通常用于深度学习

-np.reshape被广泛使用。 保持矩阵/向量尺寸不变有助于我们消除许多错误。

可以使用assert保证尺寸是我们想要的。

-numpy具有高效的内置功能

-broadcasting非常有用

你需要记住的内容:

-向量化在深度学习中非常重要, 它保证了计算的效率和清晰度。

-了解L1和L2损失函数。

-掌握诸多numpy函数,例如np.sum,np.dot,np.multiply,np.maximum等。

np.dot表示矩阵乘法,直接使用*表示元素乘法,也就是说,它将两个数组中对应位置的元素相乘,得到一个新的具有相同形状的数组,*与np.multiply类似。

作业2

你需要记住的内容:

预处理数据集的常见步骤是:

  • 找出数据的尺寸和维度(m_train,m_test,num_px等)
  • 重塑数据集,以使每个示例都是大小为(num_px * *num_px **3,1)的向量
  • "标准化"数据

我的理解是X.shape[0]表示多少行, -1表示剩余的所有维度数据合并成列,最后转置,所以最后行列互换,实验中train_set_x_orig的shape为(209,64,64,3),所以转置前表示209行,每一列都是其他维度数据的合并,最后转置,达成了209列,每一列表示每个特征。

你需要记住以下几点:

你已经实现了以下几个函数:

  • 初始化(w,b)
  • 迭代优化损失以学习参数(w,b):
    • 计算损失及其梯度
    • 使用梯度下降更新参数
  • 使用学到的(w,b)来预测给定示例集的标签
相关推荐
jz_ddk5 小时前
[数学基础] 浅尝向量与张量
人工智能·机器学习·向量·张量
孔明兴汉6 小时前
大模型 ai coding 比较
人工智能
IT研究所7 小时前
IT 资产管理 (ITAM) 与 ITSM 协同实践:构建从资产到服务的闭环管理体系
大数据·运维·人工智能·科技·安全·低代码·自动化
沐曦股份MetaX8 小时前
基于内生复杂性的类脑脉冲大模型“瞬悉1.0”问世
人工智能·开源
power 雀儿8 小时前
张量基本运算
人工智能
陈天伟教授8 小时前
人工智能应用- 人工智能交叉:01. 破解蛋白质结构之谜
人工智能·神经网络·算法·机器学习·推荐算法
政安晨9 小时前
政安晨【人工智能项目随笔】使用OpenClaw的主节点协同子节点撰写大型技术前沿论文的实战指南
人工智能·ai agent·openclaw论文写作·openclaw论文写作经验·ai代理写论文·ai分布式协作·oepnclaw应用
大成京牌9 小时前
2026年京牌政策深度对比,三款优质车型选购推荐榜单探索
人工智能
听麟10 小时前
HarmonyOS 6.0+ 跨端会议助手APP开发实战:多设备接续与智能纪要全流程落地
分布式·深度学习·华为·区块链·wpf·harmonyos
xuxianliang10 小时前
第154章 “神谕”的低语(AI)
人工智能·程序员创富