深度学习-吴恩达L1W2作业

作业1:吴恩达《深度学习》L1W2作业1 - Heywhale.com

作业2:吴恩达《深度学习》L1W2作业2 - Heywhale.com

作业1

你需要记住的内容:

-np.exp(x)适用于任何np.array x并将指数函数应用于每个坐标

-sigmoid函数及其梯度

sigmoid函数的梯度:

-image2vector通常用于深度学习

-np.reshape被广泛使用。 保持矩阵/向量尺寸不变有助于我们消除许多错误。

可以使用assert保证尺寸是我们想要的。

-numpy具有高效的内置功能

-broadcasting非常有用

你需要记住的内容:

-向量化在深度学习中非常重要, 它保证了计算的效率和清晰度。

-了解L1和L2损失函数。

-掌握诸多numpy函数,例如np.sum,np.dot,np.multiply,np.maximum等。

np.dot表示矩阵乘法,直接使用*表示元素乘法,也就是说,它将两个数组中对应位置的元素相乘,得到一个新的具有相同形状的数组,*与np.multiply类似。

作业2

你需要记住的内容:

预处理数据集的常见步骤是:

  • 找出数据的尺寸和维度(m_train,m_test,num_px等)
  • 重塑数据集,以使每个示例都是大小为(num_px * *num_px **3,1)的向量
  • "标准化"数据

我的理解是X.shape[0]表示多少行, -1表示剩余的所有维度数据合并成列,最后转置,所以最后行列互换,实验中train_set_x_orig的shape为(209,64,64,3),所以转置前表示209行,每一列都是其他维度数据的合并,最后转置,达成了209列,每一列表示每个特征。

你需要记住以下几点:

你已经实现了以下几个函数:

  • 初始化(w,b)
  • 迭代优化损失以学习参数(w,b):
    • 计算损失及其梯度
    • 使用梯度下降更新参数
  • 使用学到的(w,b)来预测给定示例集的标签
相关推荐
lucky_lyovo2 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch2 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ4 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊4 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏4 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3355 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩5 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉5 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01075 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono5 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络