深度学习-吴恩达L1W2作业

作业1:吴恩达《深度学习》L1W2作业1 - Heywhale.com

作业2:吴恩达《深度学习》L1W2作业2 - Heywhale.com

作业1

你需要记住的内容:

-np.exp(x)适用于任何np.array x并将指数函数应用于每个坐标

-sigmoid函数及其梯度

sigmoid函数的梯度:

-image2vector通常用于深度学习

-np.reshape被广泛使用。 保持矩阵/向量尺寸不变有助于我们消除许多错误。

可以使用assert保证尺寸是我们想要的。

-numpy具有高效的内置功能

-broadcasting非常有用

你需要记住的内容:

-向量化在深度学习中非常重要, 它保证了计算的效率和清晰度。

-了解L1和L2损失函数。

-掌握诸多numpy函数,例如np.sum,np.dot,np.multiply,np.maximum等。

np.dot表示矩阵乘法,直接使用*表示元素乘法,也就是说,它将两个数组中对应位置的元素相乘,得到一个新的具有相同形状的数组,*与np.multiply类似。

作业2

你需要记住的内容:

预处理数据集的常见步骤是:

  • 找出数据的尺寸和维度(m_train,m_test,num_px等)
  • 重塑数据集,以使每个示例都是大小为(num_px * *num_px **3,1)的向量
  • "标准化"数据

我的理解是X.shape[0]表示多少行, -1表示剩余的所有维度数据合并成列,最后转置,所以最后行列互换,实验中train_set_x_orig的shape为(209,64,64,3),所以转置前表示209行,每一列都是其他维度数据的合并,最后转置,达成了209列,每一列表示每个特征。

你需要记住以下几点:

你已经实现了以下几个函数:

  • 初始化(w,b)
  • 迭代优化损失以学习参数(w,b):
    • 计算损失及其梯度
    • 使用梯度下降更新参数
  • 使用学到的(w,b)来预测给定示例集的标签
相关推荐
007tg22 分钟前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报25 分钟前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe991 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………2 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房2 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck2 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭4 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库4 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别
Yingjun Mo4 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论