机器学习---HMM前向、后向和维特比算法的计算

1. HMM

python 复制代码
import numpy as np


# In[15]:


class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a in A]) * B[i][
                        indexOfO]  # 递推()
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' % (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # 求和终止
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]   #代表a1(3)
        print(P)
    def backward(self, Q, V, A, B, O, PI):  # 后向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列对应的索引
            for i in range(N):
                betas[i][t] = np.dot(np.multiply(A[i], [b[indexOfO] for b in B]), [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print('beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' % (realT, realI, realI, realT + 1, realT + 1),
                      end='')
                for j in range(N):
                    print("%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO], betas[j][t + 1]), end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(np.multiply(PI, [b[indexOfO] for b in B]), [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print("%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]), end="")
        print("0=%f" % P)

    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t+1
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                realI = i+1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f'%(realI, realI, realI, PI[0][i], B[i][indexOfO], deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])) * B[i][indexOfO]
                    print('delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'%(realT, realI, realT-1, realI, realI, realT, np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])), B[i][indexOfO], deltas[i][t]))
                    psis[i][t] = np.argmax(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A]))
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' % (realT, realI, realT-1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M-1] = np.argmax([delta[M-1] for delta in deltas])
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M-1]+1))
        for t in range(M-2, -1, -1):
            I[0][t] = psis[int(I[0][t+1])][t+1]
            print('i%d=psis%d(i%d)=%d' % (t+1, t+2, t+2, I[0][t]+1))
        print(I)

if __name__ == '__main__':
    Q = [1, 2, 3]
    V = ['红', '白']
    A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
    B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
    # O = ['红', '白', '红', '红', '白', '红', '白', '白']
    O = ['红', '白', '红', '白']    #例子
    PI = [[0.2, 0.4, 0.4]]
    HMM = HiddenMarkov()
#    HMM.forward(Q, V, A, B, O, PI)
    HMM.backward(Q, V, A, B, O, PI)
#     HMM.viterbi(Q, V, A, B, O, PI)

隐马尔可夫模型是一个统计模型,用于描述由隐藏的状态序列和对应的观测序列组成的系统。在这

个模型中,隐藏的状态是无法直接观测到的,而只能通过观测序列来进行推断。

前向算法(Forward Algorithm):前向算法用于计算在给定观测序列下每个时间步长处于特定状态

的概率。前向算法利用动态规划的思想,通过递推计算每个时间步的前向概率。前向概率

(alpha)的计算公式为:alpha[t][j] = sum(alpha[t-1][i] * A[i][j] * B[j][O[t]]) for i in range(N)

其中,alpha[t][j]表示在时间步t处于状态j的概率,A[i][j]表示从状态i转移到状态j的概率,B[j]

[O[t]]表示在状态j下观测到序列中的第t个观测的概率。

后向算法(Backward Algorithm):后向算法用于计算在给定观测序列下每个时间步从特定状态开始

的概率。后向算法同样利用动态规划的思想,通过递推计算每个时间步的后向概率。后向概率

(beta)的计算公式为: beta[t][i] = sum(A[i][j] * B[j][O[t+1]] * beta[t+1][j]) for j in range(N),其

中,beta[t][i]表示在时间步t从状态i开始的概率,A[i][j]表示从状态i转移到状态j的概率,B[j][O[t+1]]

表示在状态j下观测到序列中的第t+1个观测的概率,beta[t+1][j]表示在时间步t+1处于状态j的概率。

维特比算法(Viterbi Algorithm):维特比算法用于找到在给定观测序列下最可能的隐藏状态序列。

维特比算法利用动态规划的思想,通过递推计算每个时间步的最大概率和对应的状态。维特比算法

中使用的两个变量是delta和psi,分别表示到达某个状态的最大概率和之前的最优状态。 delta[t][j]

= max(delta[t-1][i] * A[i][j] * B[j][O[t]]) for i in range(N)

psi[t][j] = argmax(delta[t-1][i] * A[i][j]) for i in range(N)

其中,delta[t][j]表示在时间步t到达状态j的最大概率,psi[t][j]表示在时间步t到达状态j时的最优前一

个状态,argmax表示取最大值的索引。

python 复制代码
import numpy as np


# In[15]:


class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a in A]) * B[i][
                        indexOfO]  # 递推()
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' % (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # 求和终止
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]   #代表a1(3)
        print(P)
    def backward(self, Q, V, A, B, O, PI):  # 后向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列对应的索引
            for i in range(N):
                betas[i][t] = np.dot(np.multiply(A[i], [b[indexOfO] for b in B]), [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print('beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' % (realT, realI, realI, realT + 1, realT + 1),
                      end='')
                for j in range(N):
                    print("%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO], betas[j][t + 1]), end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(np.multiply(PI, [b[indexOfO] for b in B]), [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print("%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]), end="")
        print("0=%f" % P)

    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t+1
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                realI = i+1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f'%(realI, realI, realI, PI[0][i], B[i][indexOfO], deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])) * B[i][indexOfO]
                    print('delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'%(realT, realI, realT-1, realI, realI, realT, np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])), B[i][indexOfO], deltas[i][t]))
                    psis[i][t] = np.argmax(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A]))
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' % (realT, realI, realT-1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M-1] = np.argmax([delta[M-1] for delta in deltas])
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M-1]+1))
        for t in range(M-2, -1, -1):
            I[0][t] = psis[int(I[0][t+1])][t+1]
            print('i%d=psis%d(i%d)=%d' % (t+1, t+2, t+2, I[0][t]+1))
        print(I)

if __name__ == '__main__':
    Q = [1, 2, 3]
    V = ['红', '白']
    A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
    B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
    # O = ['红', '白', '红', '红', '白', '红', '白', '白']
    O = ['红', '白', '红', '白']    #例子
    PI = [[0.2, 0.4, 0.4]]
    HMM = HiddenMarkov()
#    HMM.forward(Q, V, A, B, O, PI)
#    HMM.backward(Q, V, A, B, O, PI)
    HMM.viterbi(Q, V, A, B, O, PI)

前向算法(Forward Algorithm):前向算法用于计算给定观测序列下每个时刻的前向概率

(alpha),表示在当前时刻观测到特定状态的概率。通过递推计算,利用前一时刻的前向概率和

状态转移概率、发射概率来计算当前时刻的前向概率。数学公式:alpha[i][t] = PI[t][i] * B[i]

[indexOfO],其中alpha[i][t]表示在时刻t处于状态i的前向概率,PI[t][i]表示初始状态概率,B[i]

[indexOfO]表示在状态i观测到观测序列的概率。

后向算法(Backward Algorithm):后向算法用于计算给定观测序列下每个时刻的后向概率

(beta),表示从当前时刻开始,在未来时刻观测到特定状态的概率。通过递推计算,利用后一时

刻的后向概率和状态转移概率、发射概率来计算当前时刻的后向概率。数学公式:beta[i][t] = Σ(A[i]

[j] * B[j][indexOfO] * beta[j][t+1]),其中beta[i][t]表示在时刻t处于状态i的后向概率,A[i][j]表示状态i

转移到状态j的概率,B[j][indexOfO]表示在状态j观测到观测序列的概率。

维特比算法(Viterbi Algorithm):维特比算法用于找到给定观测序列下最可能的隐藏状态序列,

即根据观测序列推断出最可能的隐藏状态路径。通过动态规划的方式,利用状态转移概率、发射概

率和初始状态概率,计算每个时刻每个状态的最大概率值和对应的前一个状态。数学公式:delta[i]

[t] = max(delta[t-1][j] * A[j][i]) * B[i][indexOfO],其中delta[i][t]表示在时刻t处于状态i的最大概率值,

A[j][i]表示状态j转移到状态i的概率,B[i][indexOfO]表示在状态i观测到观测序列的概率。

相关推荐
ChoSeitaku6 分钟前
链表循环及差集相关算法题|判断循环双链表是否对称|两循环单链表合并成循环链表|使双向循环链表有序|单循环链表改双向循环链表|两链表的差集(C)
c语言·算法·链表
Fuxiao___15 分钟前
不使用递归的决策树生成算法
算法
我爱工作&工作love我20 分钟前
1435:【例题3】曲线 一本通 代替三分
c++·算法
秀儿还能再秀37 分钟前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
白-胖-子1 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级
workflower1 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
好睡凯1 小时前
c++写一个死锁并且自己解锁
开发语言·c++·算法
Sunyanhui11 小时前
力扣 二叉树的直径-543
算法·leetcode·职场和发展
一个不喜欢and不会代码的码农1 小时前
力扣105:从先序和中序序列构造二叉树
数据结构·算法·leetcode