代码随想录算法训练营第31天|● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

文章目录

理论基础

贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。

不用花心思去研究其规律, 没有思路就立刻看题解。

基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。

学完贪心之后再去看动态规划,就会了解贪心和动规的区别

分发饼干

添加链接描述

思路:

从代码中可以看出我用了一个 index 来控制饼干数组的遍历,遍历饼干并没有再起一个 for 循环,而是采用自减的方式,这也是常用的技巧。

有的同学看到要遍历两个数组,就想到用两个 for 循环,那样逻辑其实就复杂了。

代码:

java 复制代码
class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = s.length-1;//饼干的下标
        int res=0;
        for(int i=g.length-1;i>=0;i--){// 循环判断
            if(start>=0&&s[start]>=g[i]){
                res++;
                start--;
            }
        }
        return res;
    }
}

摆动序列

思路一 贪心算法:





代码:

java 复制代码
class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;//默认最右边是峰值
        for (int i = 0; i < nums.length-1; i++) {
            //得到当前差值
            curDiff = nums[i+1] - nums[i];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

思路二:动态规划(想不清楚)

代码:

java 复制代码
class Solution {
    public int wiggleMaxLength(int[] nums) {
        // 0 i 作为波峰的最大长度
        // 1 i 作为波谷的最大长度
        int dp[][] = new int[nums.length][2];

        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.length; i++){
            //i 自己可以成为波峰或者波谷
            dp[i][0] = dp[i][1] = 1;

            for (int j = 0; j < i; j++){
                if (nums[j] > nums[i]){
                    // i 是波谷
                    dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
                }
                if (nums[j] < nums[i]){
                    // i 是波峰
                    dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
                }
            }
        }

        return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
    }

最大子序和

思路:

代码:

java 复制代码
class Solution {
    public int maxSubArray(int[] nums) {
        int sum = Integer.MIN_VALUE;
        int count = 0;
        for(int i=0;i<nums.length;i++){
            count+=nums[i];//?来判断是否结果是负数
            sum=Math.max(sum,count);// 取区间累计的最大值(相当于不断确定最大子序终止位置)
            if(count<0){//重置起始位置
                count=0;
            }
        }
        return sum;
    }
}
相关推荐
快手技术17 分钟前
从“拦路虎”到“修路工”:基于AhaEdit的广告素材修复
前端·算法·架构
qk学算法18 分钟前
力扣滑动窗口题目-76最小覆盖子串&&1234替换子串得到平衡字符串
数据结构·算法·leetcode
小欣加油19 分钟前
leetcode 860 柠檬水找零
c++·算法·leetcode·职场和发展·贪心算法
粉色挖掘机1 小时前
矩阵在密码学的应用——希尔密码详解
线性代数·算法·机器学习·密码学
七七七七072 小时前
【计算机网络】UDP协议深度解析:从报文结构到可靠性设计
服务器·网络·网络协议·计算机网络·算法·udp
TitosZhang2 小时前
排序算法稳定性判断
数据结构·算法·排序算法
一种乐趣2 小时前
PHP推荐权重算法以及分页
算法·php·推荐算法
ccLianLian3 小时前
计算机视觉·TagCLIP
人工智能·算法
千弥霜3 小时前
codeforces1997(div.3)E F
算法
利刃大大3 小时前
【动态规划:01背包】01背包详解 && 模板题 && 优化
c++·算法·动态规划·力扣·背包问题