AAPL.csv 数据文件
Date,Close,Volume,Open,High,Low
06/23/2023,186.68,53117000,185.55,187.56,185.01
06/22/2023,187.00,51245330,183.74,187.045,183.67
06/21/2023,183.96,49515700,184.90,185.41,182.5901
06/20/2023,185.01,49799090,184.41,186.10,184.41
06/16/2023,184.92,101256200,186.73,186.99,184.27
06/15/2023,186.01,65433170,183.96,186.52,183.78
06/14/2023,183.95,57462880,183.37,184.39,182.02
06/13/2023,183.31,54929130,182.80,184.15,182.44
06/12/2023,183.79,54755000,181.27,183.89,180.97
06/09/2023,180.96,48899970,181.50,182.23,180.63
06/08/2023,180.57,50214880,177.895,180.84,177.46
06/07/2023,177.82,61944620,178.44,181.21,177.32
06/06/2023,179.21,64848370,179.965,180.12,177.43
06/05/2023,179.58,121946500,182.63,184.951,178.035
06/02/2023,180.95,61996910,181.03,181.78,179.26
06/01/2023,180.09,68901810,177.70,180.12,176.9306
05/31/2023,177.25,99625290,177.325,179.35,176.76
05/30/2023,177.30,55964400,176.96,178.99,176.57
05/26/2023,175.43,54834980,173.32,175.77,173.11
05/25/2023,172.99,56058260,172.41,173.895,171.69
demo.py
python
import matplotlib.pyplot as plt
import mplfinance as mpf
import pandas as pd
plt.rcParams['font.family'] = ['SimHei'] # 设置中文字体
plt.rcParams['axes.unicode_minus'] = False # 设置负号显示
# 读取股票数据
df = pd.read_csv('AAPL.csv', index_col='Date', parse_dates=True)
# 清洗数据
df['Close'] = df['Close'].str.replace('$', '').astype(float)
df['Open'] = df['Open'].str.replace('$', '').astype(float)
df['High'] = df['High'].str.replace('$', '').astype(float)
df['Low'] = df['Low'].str.replace('$', '').astype(float)
ma5 = df['MA5'] = df['Close'].rolling(5, min_periods=1).mean()
ma20 = df['MA20'] = df['Close'].rolling(20, min_periods=1).mean()
# 添加移动平均线参数
ap0 = [
mpf.make_addplot(ma5, color="b", width=1.5),
mpf.make_addplot(ma20, color="y", width=1.5),
]
market_colors = mpf.make_marketcolors(up='red', down='green', )
my_style = mpf.make_mpf_style(marketcolors=market_colors)
# 绘制K线图
mpf.plot(df, type='candle',
figratio=(10, 4),
mav=(10, 20),
volume=True,
# 显示非交易日期
# show_nontrading=True,
addplot=ap0,
style=my_style)
mpf.show()