WhisperFusion:具有超低延迟无缝对话功能的AI系统

WhisperFusion 基于 WhisperLive 和 WhisperSpeech 的功能而构建,在实时语音到文本管道之上集成了大型语言模型 Mistral (LLM)。

LLM 和 Whisper 都经过优化,可作为 TensorRT 引擎高效运行,从而最大限度地提高性能和实时处理能力。WhiperSpeech 是通过 torch.compile 进行优化的。

特征

  • 实时语音转文本:利用 OpenAI WhisperLive 将口语实时转换为文本。

  • 大型语言模型集成:添加大型语言模型 Mistral,以增强对转录文本的理解和上下文。

  • TensorRT 优化:LLM 和 Whisper 都经过优化,可作为 TensorRT 引擎运行,确保高性能和低延迟处理。

  • torch.compile:WhisperSpeech 使用 torch.compile 来加速推理,通过将 PyTorch 代码 JIT 编译到优化的内核中,使 PyTorch 代码运行得更快。

入门

  • 我们提供了一个预构建的 TensorRT-LLM docker 容器,该容器将 Whisper 和 phi 转换为 TensorRT 引擎,并且预先下载 WhisperSpeech 模型以快速开始与 WhisperFusion 交互。

    docker run --gpus all --shm-size 64G -p 6006:6006 -p 8888:8888 -it ghcr.io/collabora/whisperfusion:latest

  • 启动网页图形用户界面

    cd examples/chatbot/htmlpython -m http.server

构建 Docker 镜像

我们提供 cuda-architecures 89 和 90 的 docker 映像。如果您有具有不同 cuda 架构的 GPU。例如使用 cuda-架构 86 为 RTX 3090 构建

复制代码
bash build.sh 86-real

这应该为 RTX 3090 构建 ghcr.io/collabora/whisperfusion:latest

项目链接

https://github.com/collabora/WhisperFusion

相关推荐
云知谷1 天前
【C++基本功】C++适合做什么,哪些领域适合哪些领域不适合?
c语言·开发语言·c++·人工智能·团队开发
rit84324991 天前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘1 天前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛1 天前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_1 天前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始1 天前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI1 天前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生1 天前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
WWZZ20251 天前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
AKAMAI1 天前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算