WhisperFusion:具有超低延迟无缝对话功能的AI系统

WhisperFusion 基于 WhisperLive 和 WhisperSpeech 的功能而构建,在实时语音到文本管道之上集成了大型语言模型 Mistral (LLM)。

LLM 和 Whisper 都经过优化,可作为 TensorRT 引擎高效运行,从而最大限度地提高性能和实时处理能力。WhiperSpeech 是通过 torch.compile 进行优化的。

特征

  • 实时语音转文本:利用 OpenAI WhisperLive 将口语实时转换为文本。

  • 大型语言模型集成:添加大型语言模型 Mistral,以增强对转录文本的理解和上下文。

  • TensorRT 优化:LLM 和 Whisper 都经过优化,可作为 TensorRT 引擎运行,确保高性能和低延迟处理。

  • torch.compile:WhisperSpeech 使用 torch.compile 来加速推理,通过将 PyTorch 代码 JIT 编译到优化的内核中,使 PyTorch 代码运行得更快。

入门

  • 我们提供了一个预构建的 TensorRT-LLM docker 容器,该容器将 Whisper 和 phi 转换为 TensorRT 引擎,并且预先下载 WhisperSpeech 模型以快速开始与 WhisperFusion 交互。

    docker run --gpus all --shm-size 64G -p 6006:6006 -p 8888:8888 -it ghcr.io/collabora/whisperfusion:latest

  • 启动网页图形用户界面

    cd examples/chatbot/htmlpython -m http.server

构建 Docker 镜像

我们提供 cuda-architecures 89 和 90 的 docker 映像。如果您有具有不同 cuda 架构的 GPU。例如使用 cuda-架构 86 为 RTX 3090 构建

复制代码
bash build.sh 86-real

这应该为 RTX 3090 构建 ghcr.io/collabora/whisperfusion:latest

项目链接

https://github.com/collabora/WhisperFusion

相关推荐
乱世刀疤6 分钟前
深度 |提“智”向新,奔向未来——当前机器人产业观察
人工智能·机器人
DisonTangor29 分钟前
LLaMA-Omni 2:基于 LLM 的自回归流语音合成实时口语聊天机器人
人工智能·开源·aigc·音视频·llama
晓13131 小时前
第四章 OpenCV篇—图像梯度与边缘检测—Python
人工智能·python·opencv·计算机视觉·pycharm
tuan_zhang1 小时前
西门子Industrial Copilot深度解析:工业智能的技术攻坚与生态重构
人工智能·copilot·工业软件
蹦蹦跳跳真可爱5891 小时前
Python----神经网络(《Going deeper with convolutions》论文解读和GoogLeNet网络)
网络·人工智能·pytorch·python·神经网络
虹科网络安全1 小时前
艾体宝方案丨深度解析生成式 AI 安全风险,Lepide 为数据安全护航
人工智能·aigc·ai监控·lepide·ai安全风险
shao9185161 小时前
Gradio全解20——Streaming:流式传输的多媒体应用(6)——RT-DETR模型构建视频流目标检测系统
人工智能·gradio·streaming·rt-detr·视频流目标检测·rt-detrv2
周周记笔记2 小时前
【统计学基础】随机抽样的特点
人工智能
金融小师妹2 小时前
AI技术视角:美联储信号与黄金动态的量化研究——基于多模态数据分析框架
大数据·人工智能·算法
jndingxin2 小时前
OpenCV 图形API(80)图像与通道拼接函数-----仿射变换函数warpAffine()
人工智能·opencv·计算机视觉