杨氏矩阵和杨辉三角


杨氏矩阵

有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,请编写程序在这样的矩阵中查找某个数字是否存在。

要求:时间复杂度小于O(N);

分析

若要满足要求时间复杂度小于O(N),就不能每一行一个个找。

根据杨氏矩阵的特点(行递增、列递增 ),我们可以从矩阵的右上角开始,

就比如我们要找上图中的数字7,

9>7,因为**列递增 ,9是该列最小的数字,都大于7,**所以第4列的数字都比7大,排除第4列

右上角 数字变为了6**,6<7,** 因为 **递增,6是该行最大的数字,都小于7,**所以第1行的数字都比7小,排除第1行

右上角数字变为了7,7=7,找到了

代码实现

复制代码
//             假设有4列,x行,y列,key是要找的数字
int FindNum(int arr[][4], int x, int y, int key)
{
	int i = 0;
	int j = y - 1;
	//满足此循环,i和j都是合法的
	while (j >= 0 && i < x)
	{
		if (arr[i][j] > key)
		{
			j--;
		}
		else if (arr[i][j] < key)
		{
			i++;
		}
		else
		{
			return 1;//找到了
		}
	}
	return 0;//没找到
}

杨辉三角

在屏幕上打印杨辉三角

分析

杨辉三角的特点:除了外围的数字为1,其他满足 数字 = 这列的上一行 数字 + 上一行前一列数字

我们定义有i行j列

其中数字是1的下标满足:j==0或i==j

其他数字的下标满足:[i][j] = [i-1][j] + [i-1][j-1]

代码实现

复制代码
#include<stdio.h>
//在屏幕上打印杨辉三角。
void YanghuiTriangle(int arr[][4], int n)
{
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j <= i; j++)
		{
			if (j == 0 || i == j)
			{
				arr[i][j] = 1;
			}
			else
			{
				arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1];
			}
		}
	}
	//打印
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j <= i; j++)
		{
			printf("%d ", arr[i][j]);
		}
		printf("\n");
	}
}
int main()
{
	int arr[4][4] = { 0 };
	YanghuiTriangle(arr, 4);

	return 0;
}
相关推荐
py有趣4 分钟前
LeetCode学习之0矩阵
学习·leetcode·矩阵
鸽鸽程序猿14 分钟前
【算法】【动态规划】斐波那契数模型
算法·动态规划·1024程序员节
Samuel-Gyx38 分钟前
数据结构--顺序表与链表
数据结构·算法·链表·1024程序员节
小年糕是糕手40 分钟前
【数据结构】队列“0”基础知识讲解 + 实战演练
c语言·开发语言·数据结构·c++·学习·算法
无限进步_44 分钟前
【C语言】函数指针数组:从条件分支到转移表的优雅进化
c语言·开发语言·数据结构·后端·算法·visual studio
Q741_1471 小时前
C++ 分治 快速选择算法 堆排序 TopK问题 力扣 215. 数组中的第K个最大元素 题解 每日一题
c++·算法·leetcode·分治·1024程序员节·topk问题·快速选择算法
文火冰糖的硅基工坊1 小时前
[人工智能-大模型-57]:模型层技术 - 软件开发的不同层面(如底层系统、中间件、应用层等),算法的类型、设计目标和实现方式存在显著差异。
人工智能·算法·中间件
鱼儿也有烦恼1 小时前
快速学完 LeetCode top 1~50 [特殊字符]
java·算法·leetcode·1024程序员节
独自破碎E1 小时前
LeetCode 380: O(1) 时间插入、删除和获取随机元素
java·算法·leetcode
Brookty1 小时前
【算法】前缀和(二)使用
java·学习·算法·前缀和·动态规划·1024程序员节