Python编程读取csv文件数据分别计算RMSE、SD、R

使用 Pandas 和 NumPy 库,从 CSV 文件中读取数据,并对列名进行了更新。使用循环计算了三组数据的 RMSE、标准差和相关系数,并将结果打印输出。其中,RMSE(Root Mean Squared Error)是衡量预测值和真实值之间误差的一种方法;SD(Standard Deviation)是预测值和真实值之间误差的标准差;R(Correlation Coefficient)是衡量预测值和真实值之间线性关系的一种方法。通过计算这些指标,可以评估模型的性能和预测精度。

一、获得CSV文件中的列名

python 复制代码
import pandas as pd
import numpy as np

# 读取 csv 文件
data = pd.read_csv('组合处理1.csv')
# 输出列名
print(data.columns)
# 更新列名
c 复制代码
结果:
['true value', 'predicted value', 'Unnamed: 2', 'true value.1',
'predicted value.1', 'Unnamed: 5', 'true value.2', 'predicted value.2']

二、完整代码计算

python 复制代码
import pandas as pd
import numpy as np

# 读取 csv 文件
data = pd.read_csv('组合处理1.csv')
# 输出列名
print(data.columns)
# 更新列名
data.columns = ['true value', 'predicted value', 'Unnamed: 2', 'true value.1',
                'predicted value.1', 'Unnamed: 5', 'true value.2', 'predicted value.2']

# 分别计算三对数据
for i, (true_col, pred_col) in enumerate([('true value', 'predicted value'),
                                          ('true value.1', 'predicted value.1'),
                                          ('true value.2', 'predicted value.2')]):
    # 提取需要计算的列
    true_values = data[true_col]
    predicted_values = data[pred_col]

    # 计算RMSE
    rmse = np.sqrt(((predicted_values - true_values) ** 2).mean())

    # 计算标准差
    sd = np.std(predicted_values - true_values)

    # 计算相关系数
    r = np.corrcoef(true_values, predicted_values)[0, 1]

    print(f"第{i+1}组结果:")
    print(f"RMSE: {rmse:.4f}")
    print(f"SD: {sd:.4f}")
    print(f"R: {r:.4f}")
相关推荐
vvoennvv29 分钟前
【Python TensorFlow】 BiTCN-LSTM双向时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·tensorflow·lstm·tcn
q***420539 分钟前
python的sql解析库-sqlparse
数据库·python·sql
大数据追光猿1 小时前
LangChain / LangGraph / AutoGPT / CrewAI / AutoGen 五大框架对比
经验分享·笔记·python·langchain·agent
wang_yb1 小时前
别急着转投 Polars!Pandas 3.0 带着“黑科技”杀回来了
python·databook
Jamesvalley2 小时前
flask处理所有logging
后端·python·flask
ekprada2 小时前
DAY 16 数组的常见操作和形状
人工智能·python·机器学习
柳鲲鹏2 小时前
OpenCV: 光流法python代码
人工智能·python·opencv
databook2 小时前
别急着转投 Polars!Pandas 3.0 带着“黑科技”杀回来了
后端·python·数据分析
烟袅2 小时前
为什么调用 OpenAI Tools 后,还要再请求一次大模型?——从代码看 LLM 工具调用的本质
后端·python·llm
GeekPMAlex2 小时前
Python OOP 深度解析:从核心语法到高级模式
python