Python编程读取csv文件数据分别计算RMSE、SD、R

使用 Pandas 和 NumPy 库,从 CSV 文件中读取数据,并对列名进行了更新。使用循环计算了三组数据的 RMSE、标准差和相关系数,并将结果打印输出。其中,RMSE(Root Mean Squared Error)是衡量预测值和真实值之间误差的一种方法;SD(Standard Deviation)是预测值和真实值之间误差的标准差;R(Correlation Coefficient)是衡量预测值和真实值之间线性关系的一种方法。通过计算这些指标,可以评估模型的性能和预测精度。

一、获得CSV文件中的列名

python 复制代码
import pandas as pd
import numpy as np

# 读取 csv 文件
data = pd.read_csv('组合处理1.csv')
# 输出列名
print(data.columns)
# 更新列名
c 复制代码
结果:
['true value', 'predicted value', 'Unnamed: 2', 'true value.1',
'predicted value.1', 'Unnamed: 5', 'true value.2', 'predicted value.2']

二、完整代码计算

python 复制代码
import pandas as pd
import numpy as np

# 读取 csv 文件
data = pd.read_csv('组合处理1.csv')
# 输出列名
print(data.columns)
# 更新列名
data.columns = ['true value', 'predicted value', 'Unnamed: 2', 'true value.1',
                'predicted value.1', 'Unnamed: 5', 'true value.2', 'predicted value.2']

# 分别计算三对数据
for i, (true_col, pred_col) in enumerate([('true value', 'predicted value'),
                                          ('true value.1', 'predicted value.1'),
                                          ('true value.2', 'predicted value.2')]):
    # 提取需要计算的列
    true_values = data[true_col]
    predicted_values = data[pred_col]

    # 计算RMSE
    rmse = np.sqrt(((predicted_values - true_values) ** 2).mean())

    # 计算标准差
    sd = np.std(predicted_values - true_values)

    # 计算相关系数
    r = np.corrcoef(true_values, predicted_values)[0, 1]

    print(f"第{i+1}组结果:")
    print(f"RMSE: {rmse:.4f}")
    print(f"SD: {sd:.4f}")
    print(f"R: {r:.4f}")
相关推荐
码界筑梦坊6 小时前
330-基于Python的社交媒体舆情监控系统
python·mysql·信息可视化·数据分析·django·毕业设计·echarts
森焱森7 小时前
详解 Spring Boot、Flask、Nginx、Redis、MySQL 的关系与协作
spring boot·redis·python·nginx·flask
he___H7 小时前
双色球红球
python
deephub7 小时前
机器学习特征工程:分类变量的数值化处理方法
python·机器学习·特征工程·分类变量
Pyeako7 小时前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset
OPEN-Source7 小时前
大模型实战:搭建一张“看得懂”的大模型应用可观测看板
人工智能·python·langchain·rag·deepseek
廖圣平7 小时前
从零开始,福袋直播间脚本研究【七】《添加分组和比特浏览器》
python
B站_计算机毕业设计之家7 小时前
豆瓣电影数据可视化分析系统 | Python Flask框架 requests Echarts 大数据 人工智能 毕业设计源码(建议收藏)✅
大数据·python·机器学习·数据挖掘·flask·毕业设计·echarts
mr_LuoWei20097 小时前
python工具:python代码知识库笔记
数据库·python