图像处理ASIC设计方法 笔记2 图像边界镜像处理

这本书是图像处理方面ASIC与DSP比较,讲了为什么要用ASIC做图像处理,它的特点和适用场景。读到第一章,(计算卷积的)工作窗口位于图像边界时镜像扩展后的情况

输入仍然是逐行逐列串行图像数据流,但是在工作窗口内部,根据窗口中心像素的坐标判断窗口位于图像边界的具体位置,由此决定窗口中某个寄存器的值是来自原先的移位寄存器,还是来自与之镜像行/列的寄存器。

每行有一个行缓存。许多单独的寄存器,还有多路选择器,组成了工作窗口位于图像边界时镜像扩展的电路图(schematic)。
核心思路是:多路选择器,有许多个,根据中心像素位于第几行,选择对应的选通支路

补充网上查到的另一个角度的策略:
图像的镜像用FPGA 实现,共有四种模式:
Mode1: 原图,
Mode2:全镜像,
Mode3:水平镜像,
Mode4:垂直镜像。

Verilog实现镜像源码:

bash 复制代码
`timescale1ns / 1ps  


module mirror #(  

parameter DW = 8,  

parameter IW = 1920,  

parameter IH = 1080,  

parameter MODE = 0 //0 1 2 3  

)  

(  

input                        pixelclk,  

input                        reset_n,  

input                        i_hsync,  

input                        i_vsync,  

input                        i_de,  

input  [DW*3-1:0]            din,  

input    [11:0]              hcount,//x  

input    [11:0]              vcount,//y  


output    [11:0]             hcount_t,//xt  

output    [11:0]             vcount_t,//yt  

output                       o_hsync,  

output                       o_vsync,  

output                       o_de,  

output  [DW*3-1:0]           dout  

);  


assign o_hsync = i_hsync;  

assign o_vsync = i_vsync;  

assign o_de    = i_de;  

assign dout    = din;   


assign hcount_t = (MODE == 0)?hcount:  

                            (MODE == 1)?(IW-1)-hcount:  

                            (MODE == 2)?(IW-1)-hcount:hcount;  

assign vcount_t = (MODE == 0)?vcount:  

                                (MODE == 1)?(IH-1)-vcount:  

                                (MODE == 2)?vcount:(IH-1)-vcount;     


endmodule
相关推荐
javpy5 分钟前
AI生成 Python小游戏 怪物防御战???
人工智能·python·pygame
半问10 分钟前
付费投流硬控互联网
人工智能·算法·互联网·推荐·流量
爱笑的眼睛1110 分钟前
超越SIFT与ORB:深入OpenCV特征检测API的设计哲学与高阶实践
java·人工智能·python·ai
西岸行者13 分钟前
学习Hammerstein-Wiener 模型,以及在回声消除场景中的应用
人工智能·学习·算法
拉姆哥的小屋16 分钟前
突破传统PINN瓶颈:基于LSTM-格林函数的3D瞬态温度场智能预测新方法
人工智能·3d·lstm
无心水16 分钟前
【神经风格迁移:深度实战】7、高级调参实战指南:从调参盲盒到科学优化方法论
人工智能·深度学习·神经网络·机器学习·vgg·神经风格迁移·vgg19
luojiezong28 分钟前
锐捷极简以太彩光网络解决方案入选《“AI中国”生态范式案例集(2025)》
网络·人工智能
Vincent_Zhang23329 分钟前
专题:通过时间轴解释区分各种时态
笔记
Light6031 分钟前
再见,REST API?你好,MCP Server!AI时代后端开发新范式
java·人工智能·rest api·ai agent·spring ai·mcp
鲨莎分不晴33 分钟前
强化学习第四课 —— 深度强化学习:Policy Gradient 入门
人工智能·学习·机器学习