图像处理ASIC设计方法 笔记2 图像边界镜像处理

这本书是图像处理方面ASIC与DSP比较,讲了为什么要用ASIC做图像处理,它的特点和适用场景。读到第一章,(计算卷积的)工作窗口位于图像边界时镜像扩展后的情况

输入仍然是逐行逐列串行图像数据流,但是在工作窗口内部,根据窗口中心像素的坐标判断窗口位于图像边界的具体位置,由此决定窗口中某个寄存器的值是来自原先的移位寄存器,还是来自与之镜像行/列的寄存器。

每行有一个行缓存。许多单独的寄存器,还有多路选择器,组成了工作窗口位于图像边界时镜像扩展的电路图(schematic)。
核心思路是:多路选择器,有许多个,根据中心像素位于第几行,选择对应的选通支路

补充网上查到的另一个角度的策略:
图像的镜像用FPGA 实现,共有四种模式:
Mode1: 原图,
Mode2:全镜像,
Mode3:水平镜像,
Mode4:垂直镜像。

Verilog实现镜像源码:

bash 复制代码
`timescale1ns / 1ps  


module mirror #(  

parameter DW = 8,  

parameter IW = 1920,  

parameter IH = 1080,  

parameter MODE = 0 //0 1 2 3  

)  

(  

input                        pixelclk,  

input                        reset_n,  

input                        i_hsync,  

input                        i_vsync,  

input                        i_de,  

input  [DW*3-1:0]            din,  

input    [11:0]              hcount,//x  

input    [11:0]              vcount,//y  


output    [11:0]             hcount_t,//xt  

output    [11:0]             vcount_t,//yt  

output                       o_hsync,  

output                       o_vsync,  

output                       o_de,  

output  [DW*3-1:0]           dout  

);  


assign o_hsync = i_hsync;  

assign o_vsync = i_vsync;  

assign o_de    = i_de;  

assign dout    = din;   


assign hcount_t = (MODE == 0)?hcount:  

                            (MODE == 1)?(IW-1)-hcount:  

                            (MODE == 2)?(IW-1)-hcount:hcount;  

assign vcount_t = (MODE == 0)?vcount:  

                                (MODE == 1)?(IH-1)-vcount:  

                                (MODE == 2)?vcount:(IH-1)-vcount;     


endmodule
相关推荐
菩提小狗2 分钟前
第16天:信息打点-CDN绕过&业务部署&漏洞回链&接口探针&全网扫描&反向邮件_笔记|小迪安全2023-2024|web安全|渗透测试|
笔记·安全·web安全
爱跑步的程序员~5 分钟前
Spring AI会话记忆使用与底层实现
人工智能·spring
ppppppatrick7 分钟前
【深度学习基础篇】线性回归代码解析
人工智能·深度学习·线性回归
肾透侧视攻城狮7 分钟前
《工业级实战:TensorFlow房价预测模型开发、优化与问题排查指南》
人工智能·深度学习·tensorfl波士顿房价预测·调整网络结构·使用k折交叉验证·添加正则化防止过拟合·tensorflow之回归问题
山岚的运维笔记12 分钟前
SQL Server笔记 -- 第69章:时态表
数据库·笔记·后端·sql·microsoft·sqlserver
王解19 分钟前
第四篇:万能接口 —— 插件系统设计与实现
人工智能·nanobot
一只理智恩19 分钟前
向量数据库在AI领域的核心作用、优势与实践指南
数据库·人工智能
deephub20 分钟前
深入RAG架构:分块策略、混合检索与重排序的工程实现
人工智能·python·大语言模型·rag
DeepModel27 分钟前
【回归算法】多项式核回归详解
人工智能·数据挖掘·回归
人工智能研究所33 分钟前
从 0 开始学习人工智能——什么是推理模型?
人工智能·深度学习·学习·机器学习·语言模型·自然语言处理