图像处理ASIC设计方法 笔记2 图像边界镜像处理

这本书是图像处理方面ASIC与DSP比较,讲了为什么要用ASIC做图像处理,它的特点和适用场景。读到第一章,(计算卷积的)工作窗口位于图像边界时镜像扩展后的情况

输入仍然是逐行逐列串行图像数据流,但是在工作窗口内部,根据窗口中心像素的坐标判断窗口位于图像边界的具体位置,由此决定窗口中某个寄存器的值是来自原先的移位寄存器,还是来自与之镜像行/列的寄存器。

每行有一个行缓存。许多单独的寄存器,还有多路选择器,组成了工作窗口位于图像边界时镜像扩展的电路图(schematic)。
核心思路是:多路选择器,有许多个,根据中心像素位于第几行,选择对应的选通支路

补充网上查到的另一个角度的策略:
图像的镜像用FPGA 实现,共有四种模式:
Mode1: 原图,
Mode2:全镜像,
Mode3:水平镜像,
Mode4:垂直镜像。

Verilog实现镜像源码:

bash 复制代码
`timescale1ns / 1ps  


module mirror #(  

parameter DW = 8,  

parameter IW = 1920,  

parameter IH = 1080,  

parameter MODE = 0 //0 1 2 3  

)  

(  

input                        pixelclk,  

input                        reset_n,  

input                        i_hsync,  

input                        i_vsync,  

input                        i_de,  

input  [DW*3-1:0]            din,  

input    [11:0]              hcount,//x  

input    [11:0]              vcount,//y  


output    [11:0]             hcount_t,//xt  

output    [11:0]             vcount_t,//yt  

output                       o_hsync,  

output                       o_vsync,  

output                       o_de,  

output  [DW*3-1:0]           dout  

);  


assign o_hsync = i_hsync;  

assign o_vsync = i_vsync;  

assign o_de    = i_de;  

assign dout    = din;   


assign hcount_t = (MODE == 0)?hcount:  

                            (MODE == 1)?(IW-1)-hcount:  

                            (MODE == 2)?(IW-1)-hcount:hcount;  

assign vcount_t = (MODE == 0)?vcount:  

                                (MODE == 1)?(IH-1)-vcount:  

                                (MODE == 2)?vcount:(IH-1)-vcount;     


endmodule
相关推荐
郝学胜-神的一滴8 分钟前
当AI遇见架构:Vibe Coding时代的设计模式复兴
开发语言·数据结构·人工智能·算法·设计模式·架构
Clarence Liu6 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型6 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
FakeOccupational6 小时前
【电路笔记 通信】数字混频(采样做频谱搬移)+频率混叠(aliasing)公式证明+带通采样示例
笔记
hit56实验室6 小时前
AI4Science开源汇总
人工智能
CeshirenTester7 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis7 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs7 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷7 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极7 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发