图像处理ASIC设计方法 笔记2 图像边界镜像处理

这本书是图像处理方面ASIC与DSP比较,讲了为什么要用ASIC做图像处理,它的特点和适用场景。读到第一章,(计算卷积的)工作窗口位于图像边界时镜像扩展后的情况

输入仍然是逐行逐列串行图像数据流,但是在工作窗口内部,根据窗口中心像素的坐标判断窗口位于图像边界的具体位置,由此决定窗口中某个寄存器的值是来自原先的移位寄存器,还是来自与之镜像行/列的寄存器。

每行有一个行缓存。许多单独的寄存器,还有多路选择器,组成了工作窗口位于图像边界时镜像扩展的电路图(schematic)。
核心思路是:多路选择器,有许多个,根据中心像素位于第几行,选择对应的选通支路

补充网上查到的另一个角度的策略:
图像的镜像用FPGA 实现,共有四种模式:
Mode1: 原图,
Mode2:全镜像,
Mode3:水平镜像,
Mode4:垂直镜像。

Verilog实现镜像源码:

bash 复制代码
`timescale1ns / 1ps  


module mirror #(  

parameter DW = 8,  

parameter IW = 1920,  

parameter IH = 1080,  

parameter MODE = 0 //0 1 2 3  

)  

(  

input                        pixelclk,  

input                        reset_n,  

input                        i_hsync,  

input                        i_vsync,  

input                        i_de,  

input  [DW*3-1:0]            din,  

input    [11:0]              hcount,//x  

input    [11:0]              vcount,//y  


output    [11:0]             hcount_t,//xt  

output    [11:0]             vcount_t,//yt  

output                       o_hsync,  

output                       o_vsync,  

output                       o_de,  

output  [DW*3-1:0]           dout  

);  


assign o_hsync = i_hsync;  

assign o_vsync = i_vsync;  

assign o_de    = i_de;  

assign dout    = din;   


assign hcount_t = (MODE == 0)?hcount:  

                            (MODE == 1)?(IW-1)-hcount:  

                            (MODE == 2)?(IW-1)-hcount:hcount;  

assign vcount_t = (MODE == 0)?vcount:  

                                (MODE == 1)?(IH-1)-vcount:  

                                (MODE == 2)?vcount:(IH-1)-vcount;     


endmodule
相关推荐
l***749441 分钟前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
智慧地球(AI·Earth)1 小时前
DeepSeek开源IMO金牌模型:AI数学垄断时代终结
人工智能
选与握2 小时前
深度学习基本知识+tensorflow
人工智能
大千AI助手2 小时前
ROUGE-SU4:文本摘要评估的跳连智慧
人工智能·机器学习·nlp·rouge·文本摘要·大千ai助手·rouge-su4
草莓熊Lotso2 小时前
unordered_map/unordered_set 使用指南:差异、性能与场景选择
java·开发语言·c++·人工智能·经验分享·python·网络协议
stormsha3 小时前
裸眼3D原理浅析AI如何生成平面裸眼3D图像以科幻战士破框而出为例
人工智能·计算机视觉·平面·3d·ai
春日见6 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
陈文锦丫7 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
小毅&Nora8 小时前
【人工智能】【AI外呼】系统架构设计与实现详解
人工智能·系统架构·ai外呼
一只侯子9 小时前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉