图像处理ASIC设计方法 笔记2 图像边界镜像处理

这本书是图像处理方面ASIC与DSP比较,讲了为什么要用ASIC做图像处理,它的特点和适用场景。读到第一章,(计算卷积的)工作窗口位于图像边界时镜像扩展后的情况

输入仍然是逐行逐列串行图像数据流,但是在工作窗口内部,根据窗口中心像素的坐标判断窗口位于图像边界的具体位置,由此决定窗口中某个寄存器的值是来自原先的移位寄存器,还是来自与之镜像行/列的寄存器。

每行有一个行缓存。许多单独的寄存器,还有多路选择器,组成了工作窗口位于图像边界时镜像扩展的电路图(schematic)。
核心思路是:多路选择器,有许多个,根据中心像素位于第几行,选择对应的选通支路

补充网上查到的另一个角度的策略:
图像的镜像用FPGA 实现,共有四种模式:
Mode1: 原图,
Mode2:全镜像,
Mode3:水平镜像,
Mode4:垂直镜像。

Verilog实现镜像源码:

bash 复制代码
`timescale1ns / 1ps  


module mirror #(  

parameter DW = 8,  

parameter IW = 1920,  

parameter IH = 1080,  

parameter MODE = 0 //0 1 2 3  

)  

(  

input                        pixelclk,  

input                        reset_n,  

input                        i_hsync,  

input                        i_vsync,  

input                        i_de,  

input  [DW*3-1:0]            din,  

input    [11:0]              hcount,//x  

input    [11:0]              vcount,//y  


output    [11:0]             hcount_t,//xt  

output    [11:0]             vcount_t,//yt  

output                       o_hsync,  

output                       o_vsync,  

output                       o_de,  

output  [DW*3-1:0]           dout  

);  


assign o_hsync = i_hsync;  

assign o_vsync = i_vsync;  

assign o_de    = i_de;  

assign dout    = din;   


assign hcount_t = (MODE == 0)?hcount:  

                            (MODE == 1)?(IW-1)-hcount:  

                            (MODE == 2)?(IW-1)-hcount:hcount;  

assign vcount_t = (MODE == 0)?vcount:  

                                (MODE == 1)?(IH-1)-vcount:  

                                (MODE == 2)?vcount:(IH-1)-vcount;     


endmodule
相关推荐
AI慧聚堂5 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者6 分钟前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye19 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报38 分钟前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神42 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技1 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
m0_748256781 小时前
WebGIS实战开源项目:智慧机场三维可视化(学习笔记)
笔记·学习·开源
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1361 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
红色的山茶花1 小时前
YOLOv9-0.1部分代码阅读笔记-loss.py
笔记