以图识图实现(附带测试代码)

前言

此篇文章建立于你看过作者的《Tensorflow第一篇(安装环境) 》和《Milvus介绍》。最后公司经过讨论需求的呈现为以图识图来进行数据的提取展示(提测中)。

实现方式

前提条件

首先我们需要有提取特征的方法(使用Tensorflow进行图片特征的提取),其次我们需要有一个图片特征的数据库(使用Milvus进行图片特征存储)。有了这两个前提条件我们就可以实现以图识图的功能。

流程图呈现

测试代码展示

提取特征向量

ini 复制代码
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.applications.resnet50 import preprocess_input

def tengetEIFeatures(path='', imageName=''):
    """
    使用ResNet50提取图像的特征向量
    :param path: 图像路径
    :param imageName: 图像名称
    :return:
    """
    # 创建ResNet50模型,并使用"imagenet"作为权重初始化
    model = ResNet50(weights="imagenet")
    # 拼接文件路径和图像名称,得到图像文件的完整路径
    image = os.path.join(path, imageName)
    # 加载图像,并将其调整为224x224的尺寸
    image = load_img(image, target_size=(224, 224))
    # 将图像转换为numpy数组
    image = np.asarray(image)
    # 增加一个维度,使图像数组成为3D数组
    image = np.expand_dims(image, axis=0)
    # 对图像进行预处理
    image = preprocess_input(image)
    # 使用模型提取图像特征
    feature = model(image)
    # 将特征转换为numpy数组
    feature = feature.numpy()
    # 将特征数组扁平化为1D数组
    feature = feature.reshape([-1])
    # 将特征向量重塑为形状为 (1, 特征数量) 的 2D 数组,为了与下游任务的兼容性而进行的。
    feature = np.array(feature).reshape((1, len(feature)))
    # 返回特征
    return feature

保存特征向量(第一次跑包含创建字段)

ini 复制代码
from pymilvus import (
    connections,
    FieldSchema, CollectionSchema, DataType,
    Collection,
)
connections.connect("default", host="localhost", port="19530")

fields = [
            FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),
            FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR,  dim=1000)
        ]

schema = CollectionSchema(fields, "test")

# 第一次运行代码
test = Collection("test", schema, consistency_level="Strong")

# 第二次运行代码
# test = Collection("test") 

data = [
    [
        'test'
    ],
    tengetEIFeatures("D:\\ML\\ClassifyJade\\case\\images\\train\\jade\\burner\", 'test.jpg')
]

insert_result = test.insert(data)

查询特征向量

ini 复制代码
from pymilvus import (
    connections,
    Collection,
)
connections.connect("default", host="localhost", port="19530")

con = Collection("test")

param = {"metric_type": "L2", "params": {"nprobe": 10}}

res = con.search(EIFeatures.tengetEIFeatures("D:\ML\ClassifyJade\case\images\train\jade\burner\", 'test.jpg'), "embeddings",
           limit=10, param={"metric_type": "L2", "params": {"nprobe": 10}})
print(res)

结尾的碎碎念

1、由于项目属于公司不能给出太多示例代码,但跑通流程是完全够用的。

2、机器学习的重点是模型的选择和数据量的大小,后续的调参完全可以慢慢来。

3、小数据量用预加载模型其实效果也不咋样。

4、对于图像处理可以使用预处理图像增加机器学习的准确率。

相关推荐
Warren2Lynch11 分钟前
解锁 UML 潜力:Visual Paradigm AI 如何革新用例、活动图和顺序图的设计
人工智能·uml
阿杰学AI13 分钟前
AI核心知识54——大语言模型之Structured CoT(简洁且通俗易懂版)
人工智能·ai·语言模型·prompt·pe·结构化提示词·structured cot
爱笑的眼睛1116 分钟前
超越 `assert`:深入 Pytest 的高级测试哲学与实践
java·人工智能·python·ai
爱笑的眼睛1116 分钟前
超越静态图表:Bokeh可视化API的实时数据流与交互式应用开发深度解析
java·人工智能·python·ai
lxmyzzs17 分钟前
X-AnyLabeling 自动数据标注保姆级教程:从安装到格式转换全流程
人工智能·数据标注
人工智能培训21 分钟前
什么是量子强化学习
人工智能·深度学习
gzroy23 分钟前
智能体+MCP+NL2SQL构建一个智能数据分析应用(一)
人工智能·数据分析
胡萝卜3.025 分钟前
现代C++特性深度探索:模板扩展、类增强、STL更新与Lambda表达式
服务器·开发语言·前端·c++·人工智能·lambda·移动构造和移动赋值
智算菩萨25 分钟前
音乐生成模型综述:从符号作曲到音频域大模型、评测体系与产业化趋势
人工智能·深度学习·算法