多维时序 | Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测

多维时序 | Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测

目录

预测效果






基本介绍

Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测(完整程序和数据)

1.先运行vmdtest,进行vmd分解;

2.再运行VMD-DBO-GRU,三个模型对比;

3.运行环境Matlab2020及以上。

  • VMD-DBO-GRU:变分模态分解结合蜣螂算法优化门控循环单元;
  • VMD-GRU:变分模态分解结合门控循环单元;
  • GRU:门控循环单元。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测
clike 复制代码
clc;clear;close all;format compact
tic
clc
clear all
fs=1;%采样频率,即时间序列两个数据之间的时间间隔,这里间隔1h采样
Ts=1/fs;%采样周期

X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);
%  参数设置
options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 70, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...                     % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 60, ...                    % 训练850次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', 0.01, ...                     % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'Plots', 'training-progress');                    % 画出曲线

%  训练
net = trainNetwork(vp_train, vt_train, layers, options);
%analyzeNetwork(net);% 查看网络结构

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482

[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

相关推荐
沅_Yuan21 小时前
基于GRU门控循环神经网络的多分类预测【MATLAB】
matlab·分类·gru
机器学习之心3 天前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
机器学习之心3 天前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
MarkHD6 天前
第二十四天 循环神经网络(RNN)LSTM与GRU
rnn·gru·lstm
【建模先锋】12 天前
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测
人工智能·cnn·gru·风速预测·时间序列预测模型
不如语冰17 天前
跟着问题学15——GRU网络结构详解及代码实战
人工智能·python·rnn·深度学习·机器学习·语言模型·gru
记得多吃点18 天前
九、RNN的变体
人工智能·rnn·深度学习·gru·lstm
coldstarry19 天前
sheng的学习笔记-AI-序列模型(Sequence Models),RNN,GRU,LSTM
rnn·深度学习·gru·lstm
铖铖的花嫁22 天前
基于 RNN(GRU, LSTM)+CNN 的红点位置检测(pytorch)
pytorch·rnn·神经网络·cnn·gru·lstm