多维时序 | Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测

多维时序 | Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测

目录

预测效果






基本介绍

Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测(完整程序和数据)

1.先运行vmdtest,进行vmd分解;

2.再运行VMD-DBO-GRU,三个模型对比;

3.运行环境Matlab2020及以上。

  • VMD-DBO-GRU:变分模态分解结合蜣螂算法优化门控循环单元;
  • VMD-GRU:变分模态分解结合门控循环单元;
  • GRU:门控循环单元。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现基于VMD-DBO-GRU、VMD-GRU、GRU的多变量时间序列预测
clike 复制代码
clc;clear;close all;format compact
tic
clc
clear all
fs=1;%采样频率,即时间序列两个数据之间的时间间隔,这里间隔1h采样
Ts=1/fs;%采样周期

X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);
%  参数设置
options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 70, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...                     % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 60, ...                    % 训练850次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', 0.01, ...                     % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'Plots', 'training-progress');                    % 画出曲线

%  训练
net = trainNetwork(vp_train, vt_train, layers, options);
%analyzeNetwork(net);% 查看网络结构

参考资料

1\] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482 \[2\] https://blog.csdn.net/kjm13182345320/article/details/124571691

相关推荐
XKuVhniPguQm9 小时前
【改进蚁群算法】/蚁群算法/Dijkstra算法/遗传算法/人工势场法实现二维/三维空间路径规划
gru
机器学习之心3 天前
GRU-BP-SVR加权组合模型回归预测四模型对比,MATLAB代码
matlab·回归·gru
EQylwUYz4 天前
聊聊含剥落故障直齿轮啮合刚度及齿轮非线性动力学程序
gru
机器学习之心6 天前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
机器学习之心8 天前
基于CNN-GRU(卷积神经网络-门控循环单元)的多变量负荷预测模型MATLAB代码
matlab·cnn·gru
LCG米12 天前
基于PyTorch的TCN-GRU电力负荷预测:从多维数据预处理到Docker云端部署
pytorch·docker·gru
机器学习之心16 天前
TCN-Transformer-GRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码
深度学习·gru·transformer
逄逄不是胖胖17 天前
《动手学深度学习》-56门控循环单元GRU
人工智能·深度学习·gru
段帅龙呀17 天前
centos7-nvidia驱动安装及简单测试
gru
机器学习之心1 个月前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型分类预测Matlab实现
cnn·gru·transformer·cnn-gru·五模型分类预测