三种深度学习模型(GRU、CNN-GRU、贝叶斯优化的CNN-GRU/BO-CNN-GRU)对北半球光伏数据进行时间序列预测

代码功能

该代码实现了一个光伏发电量预测系统,采用三种深度学习模型(GRU、CNN-GRU、贝叶斯优化的CNN-GRU/BO-CNN-GRU)对北半球光伏数据进行时间序列预测对北半球光伏数据进行时间序列预测,并通过多维度评估指标和可视化对比模型性能。

算法步骤

1. 数据预处理
  • 数据导入:从Excel读取北半球光伏数据
  • 序列重构
    构建时间窗口:用前4步预测下一步
  • 数据集划分:70%训练集,30%测试集
  • 归一化 :采用mapminmax归一化到[0,1]区间
  • 数据平铺:转换为LSTM需要的序列格式
2. 模型构建

① GRU模型

② CNN-GRU模型

③ BO-CNN-GRU模型

  • 贝叶斯优化超参数
    -GRU单元数
    • 初始学习率
    • L2正则化系数
3. 模型训练
  • 通用设置
    • 优化器:Adam
    • 最大迭代次数:500
    • 学习率策略:每400次衰减为0.1倍
    • 正则化:L2权重衰减
  • 训练过程监控:记录训练损失和RMSE
4. 预测与反归一化
matlab 复制代码
t_sim = predict(net, Lp_test); 
T_sim = mapminmax('reverse', t_sim, ps_output);  % 反归一化
5. 评估与可视化
  • 评估指标:RMSE、MAE、MAPE、R²、MSE
  • 可视化对比
    • 预测值 vs 真实值曲线
    • 误差分布柱状图
    • 雷达图/罗盘图多指标对比
    • 二维散点图(R² vs MAPE)
    • 柱状图指标对比

关键参数设定

参数 说明
num_size 0.7 训练集比例
MaxEpochs 500 最大训练轮次
GRU Units 20 基础GRU单元数
CNN Filters [16,32] 卷积层通道数
Drop Factor 0.1 学习率衰减因子
Drop Period 400 衰减周期

运行环境要求

MATLAB版本:R2021a或更高

应用场景

  1. 光伏发电预测
    • 电网调度与能源管理
    • 电站运维决策支持
  2. 时间序列预测
    • 电力负荷预测
    • 气象数据预测
    • 金融时间序列分析
  3. 模型对比研究
    • LSTM vs CNN-LSTM架构性能对比
    • 贝叶斯优化效果验证

创新点总结

  1. 三级模型架构
    GRU→ CNN-GRU → BO-CNN-GRU渐进式优化
  2. 多维度评估体系
    • 5种量化指标(RMSE/R²/MAE/MAPE/MSE)
    • 6种可视化对比(曲线/雷达/罗盘/柱状/散点/误差图)
  3. 贝叶斯自动调参
    优化神经网络超参数组合

:实际运行时需确保:

  1. 北半球光伏数据.xlsx文件在路径中
  2. 自定义函数(fical.m, radarChart.m)已实现




完整代码私信博主回复三种深度学习模型(GRU、CNN-BiLSTM、贝叶斯优化的CNN-GRU/BO-CNN-GRU)对北半球光伏数据进行时间序列预测

相关推荐
王小王-12310 天前
基于深度学习的LSTM、GRU对大数据交通流量分析与预测的研究
深度学习·gru·lstm·交通流量预测系统·客流量预测系统·流量预测·拥堵预测
机器学习之心21 天前
顶级SCI极光优化算法!PLO-Transformer-GRU多变量时间序列预测,Matlab实现
gru·多变量时间序列预测·顶级sci极光优化算法·plo-transformer
.30-06Springfield23 天前
利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
人工智能·pytorch·python·rnn·分类·gru·lstm
suixinm1 个月前
LSTM、GRU 与 Transformer网络模型参数计算
gru·lstm·transformer
珺毅同学1 个月前
ubuntu24.04+5090显卡驱动安装踩坑
linux·ubuntu·gru
机器学习之心1 个月前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型时序预测对比
cnn·gru·transformer·cnn-gru·transformer-gru·五模型时序预测对比
逻辑02 个月前
从认识AI开始-----解密门控循环单元(GRU):对LSTM的再优化
人工智能·gru·lstm
机器学习之心2 个月前
电池预测 | 第28讲 基于CNN-GRU的锂电池剩余寿命预测
人工智能·cnn-gru·锂电池剩余寿命预测
chuanauc2 个月前
RNN & GRU & LSTM 模型理解
rnn·gru·lstm