四、分类算法 - 决策树

目录

1、认识决策树

2、决策树分类原理详解

3、信息论基础

[3.1 信息](#3.1 信息)

[3.2 信息的衡量 - 信息量 - 信息熵](#3.2 信息的衡量 - 信息量 - 信息熵)

[3.3 决策树划分的依据 - 信息增益](#3.3 决策树划分的依据 - 信息增益)

[3.4 案例](#3.4 案例)

4、决策树API

5、案例:用决策树对鸢尾花进行分类

6、决策树可视化

7、总结

8、案例:泰坦尼克号乘客生存预测

[8.1 流程分析](#8.1 流程分析)


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、认识决策树

如何高效的进行决策?

特征的先后顺序

2、决策树分类原理详解

已知 四个特征值 预测 是否贷款给某个人

  • 先看房子,再工作 -> 是否贷款 只看了两个特征
  • 年龄,信贷情况,工作 看了三个特征

3、信息论基础

3.1 信息

香农:消除随机不定性的东西

  • 小明 年龄"我今年18岁"- 信息
  • 小华"小明明年19岁"-不是信息

3.2 信息的衡量 - 信息量 - 信息熵

3.3 决策树划分的依据 - 信息增益

3.4 案例

4、决策树API

5、案例:用决策树对鸢尾花进行分类

python 复制代码
def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

if __name__ == "__main__":   
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()

6、决策树可视化

  1. 导入 from sklearn.tree import DecisionTreeClassifier,export_graphviz
  2. 可视化决策树 export_graphviz(estimator,out_file="iris_tree.dot")
  3. 生存.dot文件,打开复制到网址http://webgraphviz.com/
python 复制代码
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier,export_graphviz


def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 可视化决策树
    export_graphviz(estimator,out_file="iris_tree.dot",feature_names=iris.feature_names)
    return None

if __name__ == "__main__":    
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()

7、总结

8、案例:泰坦尼克号乘客生存预测

8.1 流程分析

  • 获取数据
  • 数据处理
  1. 缺失值处理
  2. 特征值 -> 字典类型
  • 准备好特征值、目标值
  • 划分数据集
  • 特征工程:字典特征抽取
  • 决策树预估器流程
  • 模型评估
相关推荐
派可数据BI可视化12 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
api_1800790546015 小时前
性能优化揭秘:将淘宝商品 API 响应时间从 500ms 优化到 50ms 的技术实践
大数据·数据库·性能优化·数据挖掘
大千AI助手17 小时前
Huber损失函数:稳健回归的智慧之选
人工智能·数据挖掘·回归·损失函数·mse·mae·huber损失函数
茗创科技21 小时前
Annals of Neurology | EEG‘藏宝图’:用于脑电分类、聚类与预测的语义化低维流形
分类·数据挖掘·聚类
渡我白衣1 天前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
he___H1 天前
Kaggle机器学习初级的三种决策树
决策树·机器学习
番石榴AI1 天前
自己动手做一款ChatExcel数据分析系统,智能分析 Excel 数据
人工智能·python·数据挖掘·excel
Blossom.1181 天前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
hhhLLyi2 天前
营销人职业成长路径:从执行到战略的能力进阶与知识体系构建
信息可视化·数据挖掘·数据分析
编码浪子2 天前
对LlamaFactory的一点见解
人工智能·机器学习·数据挖掘