四、分类算法 - 决策树

目录

1、认识决策树

2、决策树分类原理详解

3、信息论基础

[3.1 信息](#3.1 信息)

[3.2 信息的衡量 - 信息量 - 信息熵](#3.2 信息的衡量 - 信息量 - 信息熵)

[3.3 决策树划分的依据 - 信息增益](#3.3 决策树划分的依据 - 信息增益)

[3.4 案例](#3.4 案例)

4、决策树API

5、案例:用决策树对鸢尾花进行分类

6、决策树可视化

7、总结

8、案例:泰坦尼克号乘客生存预测

[8.1 流程分析](#8.1 流程分析)


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、认识决策树

如何高效的进行决策?

特征的先后顺序

2、决策树分类原理详解

已知 四个特征值 预测 是否贷款给某个人

  • 先看房子,再工作 -> 是否贷款 只看了两个特征
  • 年龄,信贷情况,工作 看了三个特征

3、信息论基础

3.1 信息

香农:消除随机不定性的东西

  • 小明 年龄"我今年18岁"- 信息
  • 小华"小明明年19岁"-不是信息

3.2 信息的衡量 - 信息量 - 信息熵

3.3 决策树划分的依据 - 信息增益

3.4 案例

4、决策树API

5、案例:用决策树对鸢尾花进行分类

python 复制代码
def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

if __name__ == "__main__":   
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()

6、决策树可视化

  1. 导入 from sklearn.tree import DecisionTreeClassifier,export_graphviz
  2. 可视化决策树 export_graphviz(estimator,out_file="iris_tree.dot")
  3. 生存.dot文件,打开复制到网址http://webgraphviz.com/
python 复制代码
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier,export_graphviz


def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 可视化决策树
    export_graphviz(estimator,out_file="iris_tree.dot",feature_names=iris.feature_names)
    return None

if __name__ == "__main__":    
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()

7、总结

8、案例:泰坦尼克号乘客生存预测

8.1 流程分析

  • 获取数据
  • 数据处理
  1. 缺失值处理
  2. 特征值 -> 字典类型
  • 准备好特征值、目标值
  • 划分数据集
  • 特征工程:字典特征抽取
  • 决策树预估器流程
  • 模型评估
相关推荐
Dingdangcat864 小时前
YOLOX-L在钢丝绳损伤检测中的应用:基于300轮训练与COCO数据集的智能分类系统详解
人工智能·分类·数据挖掘
AAD555888998 小时前
基于改进Mask-RCNN的文化文物遗产识别与分类系统_1
人工智能·数据挖掘
香芋Yu9 小时前
【深度学习教程——01_深度基石(Foundation)】04_分类问题怎么解?逻辑回归与交叉熵的由来
深度学习·分类·逻辑回归
Aloudata11 小时前
破解监管溯源难题:从表级血缘到算子级血缘的数据治理升级
数据库·数据挖掘·数据治理·元数据·数据血缘
AC赳赳老秦11 小时前
等保2.0合规实践:DeepSeek辅助企业数据分类分级与自动化报告生成
大数据·人工智能·分类·数据挖掘·自动化·数据库架构·deepseek
ASD123asfadxv11 小时前
SAR图像地面军事目标识别与分类:YOLO11-Seg-RFAConv实现教程
人工智能·目标跟踪·分类
LOnghas121112 小时前
文化遗产物品识别与分类——基于Mask R-CNN的改进模型详解
分类·r语言·cnn
OLOLOadsd12312 小时前
【深度学习】RetinaNet_RegNetX-800MF_FPN_1x_COCO_金属表面缺陷检测与分类模型解析
人工智能·深度学习·分类
Faker66363aaa12 小时前
YOLO11-SEG-SDI实战:笔记本LCD屏幕缺陷检测与分类的创新方案
人工智能·分类·数据挖掘
沃达德软件12 小时前
智慧警务技战法
大数据·数据仓库·hadoop·深度学习·机器学习·数据挖掘