四、分类算法 - 决策树

目录

1、认识决策树

2、决策树分类原理详解

3、信息论基础

[3.1 信息](#3.1 信息)

[3.2 信息的衡量 - 信息量 - 信息熵](#3.2 信息的衡量 - 信息量 - 信息熵)

[3.3 决策树划分的依据 - 信息增益](#3.3 决策树划分的依据 - 信息增益)

[3.4 案例](#3.4 案例)

4、决策树API

5、案例:用决策树对鸢尾花进行分类

6、决策树可视化

7、总结

8、案例:泰坦尼克号乘客生存预测

[8.1 流程分析](#8.1 流程分析)


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、认识决策树

如何高效的进行决策?

特征的先后顺序

2、决策树分类原理详解

已知 四个特征值 预测 是否贷款给某个人

  • 先看房子,再工作 -> 是否贷款 只看了两个特征
  • 年龄,信贷情况,工作 看了三个特征

3、信息论基础

3.1 信息

香农:消除随机不定性的东西

  • 小明 年龄"我今年18岁"- 信息
  • 小华"小明明年19岁"-不是信息

3.2 信息的衡量 - 信息量 - 信息熵

3.3 决策树划分的依据 - 信息增益

3.4 案例

4、决策树API

5、案例:用决策树对鸢尾花进行分类

python 复制代码
def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

if __name__ == "__main__":   
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()

6、决策树可视化

  1. 导入 from sklearn.tree import DecisionTreeClassifier,export_graphviz
  2. 可视化决策树 export_graphviz(estimator,out_file="iris_tree.dot")
  3. 生存.dot文件,打开复制到网址http://webgraphviz.com/
python 复制代码
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier,export_graphviz


def decision_iris():
    # 用决策树对鸢尾花进行分类
    # 1、获取数据集
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
    # 3、决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 可视化决策树
    export_graphviz(estimator,out_file="iris_tree.dot",feature_names=iris.feature_names)
    return None

if __name__ == "__main__":    
    # 代码4:用决策树对鸢尾花进行分类
    decision_iris()

7、总结

8、案例:泰坦尼克号乘客生存预测

8.1 流程分析

  • 获取数据
  • 数据处理
  1. 缺失值处理
  2. 特征值 -> 字典类型
  • 准备好特征值、目标值
  • 划分数据集
  • 特征工程:字典特征抽取
  • 决策树预估器流程
  • 模型评估
相关推荐
He_Donglin31 分钟前
Data Mining|缺省值补全实验
人工智能·机器学习·数据挖掘
胡耀超2 小时前
图像颜色理论与数据挖掘应用的全景解析
人工智能·python·opencv·计算机视觉·数据挖掘·视觉检测·pillow
終不似少年遊*4 小时前
MindSpore框架学习项目-ResNet药物分类-数据增强
人工智能·深度学习·分类·数据挖掘·华为云·resnet·modelart
Mr.Winter`8 小时前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
蜡笔小新..14 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
奋斗者1号15 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
正在走向自律18 小时前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
lilye6619 小时前
精益数据分析(49/126):UGC商业模式中消息提醒与内容分享的关键作用
数据挖掘·数据分析
vlln21 小时前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习
奋斗者1号21 小时前
机器学习之决策树与决策森林:机器学习中的强大工具
人工智能·决策树·机器学习