文章目录
-
-
- [✅ 定义:](#✅ 定义:)
- [📌 取值范围:](#📌 取值范围:)
- [🔍 举例说明:](#🔍 举例说明:)
- [🧠 应用场景:](#🧠 应用场景:)
- [⚠️ 局限性:](#⚠️ 局限性:)
- [💡 扩展概念:](#💡 扩展概念:)
-
Jaccard 相似度(Jaccard Similarity) 是一种用于衡量两个集合之间相似程度的指标,广泛应用于信息检索、文本挖掘、推荐系统和自然语言处理等领域。
✅ 定义:
给定两个集合 A A A 和 B B B,Jaccard 相似度定义为它们的交集大小与并集大小的比值:
Jaccard Similarity ( A , B ) = ∣ A ∩ B ∣ ∣ A ∪ B ∣ \text{Jaccard Similarity}(A, B) = \frac{|A \cap B|}{|A \cup B|} Jaccard Similarity(A,B)=∣A∪B∣∣A∩B∣
- ∣ A ∩ B ∣ |A \cap B| ∣A∩B∣:集合 A A A 和 B B B 中共同元素的数量
- ∣ A ∪ B ∣ |A \cup B| ∣A∪B∣:集合 A A A 和 B B B 中所有不同元素的总数
📌 取值范围:
- Jaccard 相似度的取值范围在 0 到 1 之间:
- 0:表示两个集合没有交集,完全不相似;
- 1:表示两个集合完全相同,完全相似。
🔍 举例说明:
假设:
- A = { apple , banana , orange } A = \{\text{apple}, \text{banana}, \text{orange}\} A={apple,banana,orange}
- B = { banana , grape , orange , pear } B = \{\text{banana}, \text{grape}, \text{orange}, \text{pear}\} B={banana,grape,orange,pear}
那么:
- A ∩ B = { banana , orange } A \cap B = \{\text{banana}, \text{orange}\} A∩B={banana,orange} → 大小为 2
- A ∪ B = { apple , banana , orange , grape , pear } A \cup B = \{\text{apple}, \text{banana}, \text{orange}, \text{grape}, \text{pear}\} A∪B={apple,banana,orange,grape,pear} → 大小为 5
计算:
Jaccard Similarity ( A , B ) = 2 5 = 0.4 \text{Jaccard Similarity}(A, B) = \frac{2}{5} = 0.4 Jaccard Similarity(A,B)=52=0.4
🧠 应用场景:
- 文本相似度比较:将两段文本视为词集合,计算它们的 Jaccard 相似度,判断内容是否相似。
- 关键词匹配:比较两个文档或查询的关键词集合之间的重合度。
- 推荐系统:评估用户兴趣集合之间的相似性。
- 模型输出分析:如你之前提到的内容中,用来比较 LLM 不同层前后映射出的 top-k token 的变化情况。
- 数据去重/聚类:识别重复或高度相似的数据项。
⚠️ 局限性:
- 不考虑频率:Jaccard 只关心元素是否存在,不考虑出现次数(即它是基于集合而不是多重集合或多袋模型 bag-of-words)。
- 对大规模集合计算效率低:当集合很大时,计算交集和并集可能较慢。
💡 扩展概念:
-
Jaccard 距离 :用来衡量两个集合的不相似程度,公式为:
Jaccard Distance = 1 − Jaccard Similarity \text{Jaccard Distance} = 1 - \text{Jaccard Similarity} Jaccard Distance=1−Jaccard Similarity -
Tanimoto 系数:有时也被称作 Jaccard 相似度,但通常用于向量空间中的一种扩展形式。