概率基础——几何分布

概率基础------几何分布

介绍

在统计学中,几何分布是描述了在一系列独立同分布的伯努利试验中,第一次成功所需的试验次数的概率分布。在连续抛掷硬币的试验中,每次抛掷结果为正面向上的概率为 p p p,反面向上的概率为 1 − p 1-p 1−p。几何随机变量 X X X表示连续抛掷硬币直到第一次出现正面向上的试验次数。

理论及公式

几何分布的概率质量函数(PMF)为:

P ( X = k ) = ( 1 − p ) k − 1 × p P(X = k) = (1 - p)^{k-1} \times p P(X=k)=(1−p)k−1×p

其中, k k k是试验次数, p p p 是每次试验成功(正面向上)的概率。

几何分布的期望和方差可以通过其概率质量函数得到。设几何随机变量为 X X X,表示第一次成功所需的试验次数。

  1. 期望(均值)

E ( X ) = 1 p E(X) = \frac{1}{p} E(X)=p1

  1. 方差

V a r ( X ) = 1 − p p 2 Var(X) = \frac{1-p}{p^2} Var(X)=p21−p

其中, p p p是每次试验成功(正面向上)的概率。

这些公式可以帮助我们计算几何分布的期望和方差,从而更好地理解该分布的特征和性质。

示例与绘图

接下来,我们将使用Python来实现绘制几何分布的概率质量函数图。

python 复制代码
import matplotlib.pyplot as plt
from scipy.stats import geom

fig, ax = plt.subplots(2, 1)
params = [0.5, 0.3]

x = range(1, 11)

for i in range(len(params)):
    geom_rv = geom(params[i])
    
    ax[i].plot(x, geom_rv.pmf(x), 'ro', lw=5, alpha=0.6, label='Geometric PMF')
    ax[i].vlines(x, 0, geom_rv.pmf(x), colors='r')
    ax[i].set_xlim(0, 10)
    ax[i].set_ylim(0, 0.6)
    ax[i].set_title('p = %.2f' % params[i])
    ax[i].set_xticks(x)
    ax[i].set_yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6])
    ax[i].grid(ls='--')
plt.show()

运行以上代码,将会得到一个几何分布的概率质量函数图。从图中可以看出,随着试验次数的增加,成功的概率逐渐减小,但总体上呈指数下降的趋势。这是因为每次试验成功的概率 p p p乘以 ( 1 − p ) k − 1 (1-p)^{k-1} (1−p)k−1,随着 k k k的增加, ( 1 − p ) k − 1 (1-p)^{k-1} (1−p)k−1的值逐渐减小,从而导致整体概率下降。

python 复制代码
from scipy.stats import geom
import matplotlib.pyplot as plt

x = range(1, 20)
geom_rv = geom(p=0.5)
geom_rvs = geom_rv.rvs(size=100000)
plt.hist(geom_rvs, bins=20, density=True, alpha=0.75, edgecolor='black')
plt.gca().axes.set_xticks(range(1, 20))

mean, var, skew, kurt = geom_rv.stats(moments='mvsk')
print("Mean:", mean)
print("Variance:", var)
plt.grid(ls='--')
plt.show()

总结

本文介绍了几何分布及Python实现,利用了函数包的各个方法计算出各个理论统计值,利用采样样本数据计算出来的值和理论值基本算都是相等的。

相关推荐
培风图南以星河揽胜2 小时前
Java实习模拟面试|离散数学|概率论|金融英语|数据库实战|职业规划|期末冲刺|今日本科计科要闻速递:技术分享与学习指南
java·面试·概率论
雪不下3 天前
计算机中的数学:概率(3)
概率论
sensen_kiss4 天前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
AI大模型学徒4 天前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
谅望者6 天前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
醒过来摸鱼8 天前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
ChoSeitaku10 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
Cathy Bryant10 天前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
谅望者10 天前
数据分析笔记03:概率分布理论
笔记·数据分析·概率论
醒过来摸鱼11 天前
多重组合问题与矩阵配额问题
线性代数·矩阵·概率论