pytorch chunk的使用举例

在 PyTorch 中,`chunk` 是一个用于将张量(tensor)按指定维度进行切片的函数。它可以将一个张量切分成多个块。

下面是一个使用 `chunk` 函数的示例:

```python

import torch

创建一个大小为 (6, 8) 的张量

tensor = torch.arange(48).reshape(6, 8)

print(tensor)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23],

[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

使用 chunk 函数将张量在第 1 维度上切分成两个块

chunks = torch.chunk(tensor, 2, dim=0)

for chunk in chunks:

print(chunk)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23]])

tensor([[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

```

在上面的例子中,我们首先创建了一个大小为 (6, 8) 的张量 `tensor`。然后,我们使用 `chunk` 函数将 `tensor` 在第 1 维度上切分成两个块。`chunk` 函数的第一个参数是要切分的张量,第二个参数是要切分的块数,第三个参数 `dim` 是指定切分的维度。

通过循环遍历 `chunks`,我们可以分别打印出切分后的两个块。可以看到,原始张量在第 1 维度上被均匀切分成两个大小相等的子张量。

`chunk` 函数在处理大型张量时非常有用,可以将其分割成更小的块,以便逐块处理或并行处理。

相关推荐
OpenBayes2 分钟前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
寻梦csdn3 分钟前
pycharm+miniconda兼容问题
ide·python·pycharm·conda
退休钓鱼选手27 分钟前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
冰糖猕猴桃38 分钟前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
PPIO派欧云39 分钟前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
雨大王5121 小时前
怎么打造一个能自我进化的制造数字基座?
人工智能·汽车·制造
fengfuyao9851 小时前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
Java面试题总结1 小时前
基于 Java 的 PDF 文本水印实现方案(iText7 示例)
java·python·pdf
不懒不懒1 小时前
【决策树算法实战指南:从原理到Python实现】
python·决策树·id3·c4.5·catr
爱吃泡芙的小白白1 小时前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合