pytorch chunk的使用举例

在 PyTorch 中,`chunk` 是一个用于将张量(tensor)按指定维度进行切片的函数。它可以将一个张量切分成多个块。

下面是一个使用 `chunk` 函数的示例:

```python

import torch

创建一个大小为 (6, 8) 的张量

tensor = torch.arange(48).reshape(6, 8)

print(tensor)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23],

[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

使用 chunk 函数将张量在第 1 维度上切分成两个块

chunks = torch.chunk(tensor, 2, dim=0)

for chunk in chunks:

print(chunk)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23]])

tensor([[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

```

在上面的例子中,我们首先创建了一个大小为 (6, 8) 的张量 `tensor`。然后,我们使用 `chunk` 函数将 `tensor` 在第 1 维度上切分成两个块。`chunk` 函数的第一个参数是要切分的张量,第二个参数是要切分的块数,第三个参数 `dim` 是指定切分的维度。

通过循环遍历 `chunks`,我们可以分别打印出切分后的两个块。可以看到,原始张量在第 1 维度上被均匀切分成两个大小相等的子张量。

`chunk` 函数在处理大型张量时非常有用,可以将其分割成更小的块,以便逐块处理或并行处理。

相关推荐
字节跳动_离青8 分钟前
智能的路径
人工智能
王上上19 分钟前
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
论文阅读·人工智能·cnn
Channing Lewis30 分钟前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣31 分钟前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IT科技那点事儿39 分钟前
引领AI安全新时代 Accelerate 2025北亚巡展·北京站成功举办
人工智能·安全
databook1 小时前
概率图模型:机器学习的结构化概率之道
python·机器学习·scikit-learn
新智元1 小时前
美 IT 业裁员狂飙 35%,「硅谷梦」彻底崩塌!打工人怒喷 PIP
人工智能·openai
新智元1 小时前
乔布斯挚友去世!胰腺癌再夺硅谷天才,曾写下苹果「创世代码」
人工智能·openai
拾回程序猿的圈圈∞1 小时前
实战二:开发网页端界面完成黑白视频转为彩色视频
python·ai编程
亚林瓜子1 小时前
AWS Elastic Beanstalk + CodePipeline(Python Flask Web的国区CI/CD)
python·ci/cd·flask·web·aws·beanstalk·codepipeline