pytorch chunk的使用举例

在 PyTorch 中,`chunk` 是一个用于将张量(tensor)按指定维度进行切片的函数。它可以将一个张量切分成多个块。

下面是一个使用 `chunk` 函数的示例:

```python

import torch

创建一个大小为 (6, 8) 的张量

tensor = torch.arange(48).reshape(6, 8)

print(tensor)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23],

[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

使用 chunk 函数将张量在第 1 维度上切分成两个块

chunks = torch.chunk(tensor, 2, dim=0)

for chunk in chunks:

print(chunk)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23]])

tensor([[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

```

在上面的例子中,我们首先创建了一个大小为 (6, 8) 的张量 `tensor`。然后,我们使用 `chunk` 函数将 `tensor` 在第 1 维度上切分成两个块。`chunk` 函数的第一个参数是要切分的张量,第二个参数是要切分的块数,第三个参数 `dim` 是指定切分的维度。

通过循环遍历 `chunks`,我们可以分别打印出切分后的两个块。可以看到,原始张量在第 1 维度上被均匀切分成两个大小相等的子张量。

`chunk` 函数在处理大型张量时非常有用,可以将其分割成更小的块,以便逐块处理或并行处理。

相关推荐
光锥智能5 小时前
CES观察|AI硬件迎来黄金时代,中国机器人“进场打工”
人工智能
九河云5 小时前
数据驱动未来,华为云DWS为智能决策提速
大数据·人工智能·安全·机器学习·华为云
黄河里的小鲤鱼5 小时前
拯救草台班子-战略
人工智能·python·信息可视化
qq_411262425 小时前
DAB加ai加蓝牙音箱有市场吗
人工智能
华清远见成都中心5 小时前
机器学习怎么学?
人工智能·机器学习
碎碎思5 小时前
在 FPGA 上实现并行脉冲神经网络(Spiking Neural Net)
人工智能·深度学习·神经网络·机器学习·fpga开发
Dr.Alex Wang5 小时前
Google Firebase 实战教学 - Streamlit、Bucket、Firebase
数据库·python·安全·googlecloud
小二·5 小时前
Python Web 全栈开发实战教程:基于 Flask 与 Layui 的待办事项系统
前端·python·flask
FONE_Platform5 小时前
能源化工行业全面预算解决方案:重塑双碳目标下的财务新动能
大数据·人工智能
前沿在线5 小时前
从“用系统”到“跑 Agent”:AI 钉钉 1.1 在重新定义企业操作系统 | 前沿在线
人工智能