pytorch chunk的使用举例

在 PyTorch 中,`chunk` 是一个用于将张量(tensor)按指定维度进行切片的函数。它可以将一个张量切分成多个块。

下面是一个使用 `chunk` 函数的示例:

```python

import torch

创建一个大小为 (6, 8) 的张量

tensor = torch.arange(48).reshape(6, 8)

print(tensor)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23],

[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

使用 chunk 函数将张量在第 1 维度上切分成两个块

chunks = torch.chunk(tensor, 2, dim=0)

for chunk in chunks:

print(chunk)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23]])

tensor([[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

```

在上面的例子中,我们首先创建了一个大小为 (6, 8) 的张量 `tensor`。然后,我们使用 `chunk` 函数将 `tensor` 在第 1 维度上切分成两个块。`chunk` 函数的第一个参数是要切分的张量,第二个参数是要切分的块数,第三个参数 `dim` 是指定切分的维度。

通过循环遍历 `chunks`,我们可以分别打印出切分后的两个块。可以看到,原始张量在第 1 维度上被均匀切分成两个大小相等的子张量。

`chunk` 函数在处理大型张量时非常有用,可以将其分割成更小的块,以便逐块处理或并行处理。

相关推荐
永霖光电_UVLED1 分钟前
GlobalFoundries从台积电获得GaN技术许可
人工智能·神经网络·生成对抗网络
CoderIsArt4 分钟前
抽象语法树AST与python的Demo实现
python
AKAMAI22 分钟前
Forrester调研400位高级决策者,揭示AI应用未来
人工智能·云计算
KKKlucifer22 分钟前
数据智能时代的安全困局与 AI 破局逻辑
人工智能·安全
Dm_dotnet32 分钟前
Microsoft Agent Framework/C#:了解Workflows的几种不同模式
人工智能
Macbethad37 分钟前
基于世界模型的自动驾驶控制算法
人工智能·机器学习·自动驾驶
带电的小王37 分钟前
【AI大模型技术】4.预训练语言模型(PLMs,Pre-trained Langue Models);5.Transformers Tutorial
人工智能·语言模型·自然语言处理
搬砖者(视觉算法工程师)1 小时前
自动驾驶技术前沿:传感器技术
人工智能·自动驾驶
_codemonster1 小时前
深度学习实战(基于pytroch)系列(五)线性回归的pytorch实现
pytorch·深度学习·线性回归
算法与编程之美1 小时前
探究pytorch中多个卷积层和全连接层的输出方法
人工智能·pytorch·深度学习·神经网络·cnn