pytorch chunk的使用举例

在 PyTorch 中,`chunk` 是一个用于将张量(tensor)按指定维度进行切片的函数。它可以将一个张量切分成多个块。

下面是一个使用 `chunk` 函数的示例:

```python

import torch

创建一个大小为 (6, 8) 的张量

tensor = torch.arange(48).reshape(6, 8)

print(tensor)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23],

[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

使用 chunk 函数将张量在第 1 维度上切分成两个块

chunks = torch.chunk(tensor, 2, dim=0)

for chunk in chunks:

print(chunk)

输出:

tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],

[ 8, 9, 10, 11, 12, 13, 14, 15],

[16, 17, 18, 19, 20, 21, 22, 23]])

tensor([[24, 25, 26, 27, 28, 29, 30, 31],

[32, 33, 34, 35, 36, 37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47]])

```

在上面的例子中,我们首先创建了一个大小为 (6, 8) 的张量 `tensor`。然后,我们使用 `chunk` 函数将 `tensor` 在第 1 维度上切分成两个块。`chunk` 函数的第一个参数是要切分的张量,第二个参数是要切分的块数,第三个参数 `dim` 是指定切分的维度。

通过循环遍历 `chunks`,我们可以分别打印出切分后的两个块。可以看到,原始张量在第 1 维度上被均匀切分成两个大小相等的子张量。

`chunk` 函数在处理大型张量时非常有用,可以将其分割成更小的块,以便逐块处理或并行处理。

相关推荐
沃达德软件3 分钟前
图像处理与复原技术
图像处理·人工智能·深度学习·神经网络·目标检测·计算机视觉·目标跟踪
坐在地上想成仙4 分钟前
人工智能商业落地思考:从人类行为图谱到技术栈映射
人工智能
zhangfeng11334 分钟前
ModelScope(魔搭社区)介绍与模型微调全指南 中国版Hugging Face GPU租借平台 一站式开源模型社区与服务平台
人工智能·开源
PaperRed ai写作降重助手4 分钟前
如何选择适合自己的AI智能降重写作软件
人工智能·深度学习·aigc·ai写作·论文降重·论文查重·智能降重
友思特 智能感知6 分钟前
友思特案例 | 金属行业视觉检测案例三:彩涂钢板表面纹理检测
人工智能·视觉检测
布局呆星7 分钟前
SQLite数据库的介绍与使用
数据库·python
2401_838472517 分钟前
用Python和Twilio构建短信通知系统
jvm·数据库·python
李永奉14 分钟前
杰理芯片SDK开发-ENC双麦降噪配置/调试教程
人工智能·单片机·嵌入式硬件·物联网·语音识别
weixin_4521595515 分钟前
如何从Python初学者进阶为专家?
jvm·数据库·python
Hello.Reader16 分钟前
面向 403 与域名频繁变更的合规爬虫工程实践以 Libvio 系站点为例
爬虫·python·网络爬虫